In this study, magnetic natural zeolite (ZTM) was prepared using the coprecipitation method and dithizone was then immobilized on its surface in less toxic medium of alkaline to yield dithizone-immobilized magnetic zeolite (ZTM-Dtz). The synthesized ZTM-Dtz was characterized by FTIR and XRD, indicating that dithizone was successfully immobilized on the surface of ZTM. Vibrating sample magnetometer measurements showed superparamagnetic properties of either ZTM or ZTM-Dtz with magnetization values of 7.35 and 11.49 emu g−1, respectively. The adsorption kinetics of Pb(II) on both adsorbents followed a pseudo-second-order and their adsorption isotherms were properly described by the Langmuir model. The adsorption capacity of ZTM and ZTM-Dtz were 6.94 and 38.46 mg g−1, respectively, suggesting that dithizone immobilization enhanced the adsorbent capacity more than 5 times. The interaction mechanism between Pb(II) metal ion and ZTM was dominated by ion exchange, whereas that of ZTM-Dtz was mostly hydrogen bonds and complexation. The synthesized material is promising to be developed for the adsorption of heavy metal ions such as Pb(II) because it provides a high adsorption capacity and the adsorbents can be easily separated magnetically after application.