p-Index From 2021 - 2026
13.052
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Dinamik Jurnal Ilmu Komputer dan Informasi Jurnal Masyarakat Informatika Jurnal Sains dan Teknologi Semantik Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik Prosiding SNATIF Journal of ICT Research and Applications Teknika: Jurnal Sains dan Teknologi Scientific Journal of Informatics JAIS (Journal of Applied Intelligent System) Proceeding SENDI_U Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Teknologi dan Sistem Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Jurnal Manajemen Informatika Jurnal Kridatama Sains dan Teknologi Infotekmesin Jurnal Mnemonic Abdimasku : Jurnal Pengabdian Masyarakat Variabel Journal of Intelligent Computing and Health Informatics (JICHI) SKANIKA: Sistem Komputer dan Teknik Informatika Jurnal Teknik Informatika (JUTIF) JUDIMAS (Jurnal Inovasi Pengabdian Kepada Masyarakat) Jurnal Program Kemitraan dan Pengabdian Kepada Masyarakat Journal of Soft Computing Exploration Advance Sustainable Science, Engineering and Technology (ASSET) Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer Prosiding Seminar Nasional Hasil-hasil Penelitian dan Pengabdian Pada Masyarakat Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Scientific Journal of Informatics LogicLink: Journal of Artificial Intelligence and Multimedia in Informatics Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) Advance Sustainable Science, Engineering and Technology (ASSET)
Claim Missing Document
Check
Articles

Imperceptible Watermarking Using Discrete Wavelet Transform and Daisy Descriptor for Hiding Noisy Watermark Abdussalam, Abdussalam; Umam, Chaerul; Sari, Wellia Shinta; Rachmawanto, Eko Hari; Shidik, Guruh Fajar; Andono, Pulung Nurtantio; Lestiawan, Heru; Islam, Hussain Md Mehedul
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4423

Abstract

This research aims at overcoming the challenge of improving security and robustness in digital image watermarking, a critical activity in protecting intellectual property against misuse and manipulation. In a move to overcome such a challenge, this work introduces a new form of watermarking that incorporates Discrete Wavelet Transform (DWT) and Daisy Descriptor, with a view to enhancing both durability and invisibility of the watermark. The proposed method embeds a noise-variant watermark into selected frequency sub-bands using DWT, while the Daisy Descriptor enhances resistance to noise-based attacks. Testing conducted with three grayscale images, namely Lena, Cameraman, and Lion, each with a resolution of 512 × 512 pixels, showed that the proposed DWT-Daisy Descriptor outperforms current methodologies, producing high Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) values. In fact, in Lena, a PSNR value of 63.71 dB and an SSIM value of 1 were attained, with Cameraman having a PSNR value of 68.33 dB and an SSIM value of 1. As for attack resistivity, a high PSNR value of 50.11 dB under Gaussian attack and 55.70 dB under Salt-and-Pepper attack, with SSIM values approaching 1, confirm the robustness of the proposed scheme. This study highlights the significance of an efficient and secure watermarking technique that not only preserves image quality but also withstands various distortions, making it highly relevant for digital content protection in modern multimedia applications.
Hybrid Quantum Representation and Hilbert Scrambling for Robust Image Watermarking Sari, Christy Atika; Abdussalam, Abdussalam; Rachmawanto, Eko Hari; Islam, Hussain Md Mehedul
Scientific Journal of Informatics Vol. 11 No. 4: November 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i4.10140

Abstract

Purpose: This work aims to apply Quantum Hilbert Scrambling to enhance the security and integrity of image watermarking without affecting visual quality degradation. Further conception of the surveyed methods could result in a very good solution to conventional methods of watermarking in solving some problems of digital image security and integrity with new concepts of quantum computing. Methods: The paper reviews Quantum Hilbert Scrambling, whose computational complexity is . The process involves encoding the image into a quantum state, permuting qubits by the Hilbert curve, and embedding a watermark using quantum gates. Result: The quantitative performance evaluation metrics, like Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM), have shown high Peak Signal to Noise Ratio (PSNR) values from 56.13 dB to 57.87 dB and Structural Similarity Index (SSIM) from 0.9985 to 0.9990, correspondingly. This justifies the fact that the quality degradation is very slight and the fine details of the structure are well maintained. Novelty: The proposed method uniquely integrates quantum computing with traditional watermarking steps for a secure and effective approach in digital watermarking. Further development should focus on improving the quantum circuit regarding computation efficiency, extending the applicability of the method to a wide range of images, and various situations in watermarking, and finding hybrid approaches by combining quantum and classical approaches towards better performance and scalability.
Pengaruh Asisten Virtual Berbasis Artificial Intelligence Terhadap Integritas Sertifikasi Kompetensi Pemrograman secara Online Pujiono, Imam Prayogo; Rachmawanto, Eko Hari; Hana, Fida Maisa
Jurnal Kridatama Sains dan Teknologi Vol 6 No 01 (2024): JURNAL KRIDATAMA SAINS DAN TEKNOLOGI
Publisher : Universitas Ma'arif Nahdlatul Ulama Kebumen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53863/kst.v6i01.1052

Abstract

The use of virtual assistants based on Artificial Intelligence (AI) has shown a significant impact in various sectors, especially education. The presence of AI-based virtual assistants capable of answering questions from various topics creates new opportunities and challenges, especially regarding exams and assessments. This research examines the impact of using AI-based virtual assistants, specifically ChatGPT (GPT-4), on the integrity of programming competency certification carried out online. Through field experiments, the author took three online programming competency certifications related to "Python Fundamentals for Beginners", "Java Programming", and "Android Application Development" and used ChatGPT (GPT-4) to answer all exam questions. The test results show that GPT-4 successfully answered 9 out of 10 questions given in the three programming competency certifications that were taken and declared to have passed the exam. This raises serious questions about the validity of certificates obtained through competency certification which is carried out online. This research reveals that there is a need for more effective examination methods in assessing the true abilities of certification participants, such as project-based examinations, examinations using questions in video form, and interview-based examinations. This examination method will not only increase the credibility of online programming competency certification but also ensure that participants who pass the certification have expertise related to the field being tested. Further research is needed to explore the impact of AI-based virtual assistants in various educational contexts, especially on online competency certification.
Classification of Corn Leaf Disease Using Convolutional Neural Network Ariska, Ratih; Sari, Christy Atika; Rachmawanto, Eko Hari
Advance Sustainable Science Engineering and Technology Vol. 6 No. 4 (2024): August-October
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v6i4.772

Abstract

Corn is a crop that plays a major role in food supply worldwide. Known as a cereal crop with high economic value, corn is one of the most important raw materials in the agricultural industry in many parts of the world. Leaf blight is characterized by small spots that gradually enlarge and turn brown. It is a decay of foliage caused by the fungus or species Rhizoctonia solani. Leaf spot is caused by the fungus Hel-minthoporium maydis, while stem rot is caused by Fusarium granearum. From these problems, a machine learning-based solution is given to classify corn leaf diseases using the Convolutional Neural Network (CNN) algorithm. CNN are used to classify corn leaf diseases. The selection of CNN is based on its ability to extract local attributes from image data and combine them for a more detailed and abstract representation, which is better. Classification was performed using 2145 datasets for leaf blight and 1574 datasets for leaf spot. The accuracy results obtained from this study reached 99% with the last training accuracy value of 99.06% and the last validation accuracy result of 98.50%. For future research may use more modern architectures such as classification using EfficientNet B3 architecture with transfer learning or MobileNet to improve accuracy results.
Jasmine Flower Classification with CNN Architectures: A Comparative Study of NasNetMobile, VGG16, and Xception in Agricultural Technology Saputra, Danar Bayu Adi; Sari, Christy Atika; Rachmawanto, Eko Hari
Advance Sustainable Science Engineering and Technology Vol. 6 No. 4 (2024): August-October
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v6i4.790

Abstract

Jasmine flowers have many benefits and uses such as for traditional medicine, tea, perfume, cosmetics, decoration, and others. in the selection of fresh jasmine flowers for making tea is very important, currently the classification of jasmine flowers for making tea is mostly still using manual methods. Often influenced by individual preferences, opinions, or biases. this causes a lack of objectivity and uncertainty in the classification of jasmine flowers. The manual method is very weak due to human visual limitations and fatigue levels which can result in less than the optimal jasmine flower classification. Therefore, in the research that has been done, a transfer learning system was applied that can classify fresh jasmine flowers with rotten jasmine flowers. This study aims to compare three different Convolutional Neural Network architectures: NasNetMobile, VGG16, and Xception. The results on the three architectures can show maximum results, namely 99.21% for NasNetMobile, 98.69% for VGG16 and 97.91% for Xception. This study provides insight into the classification of good and bad jasmine flowers to encourage further exploration in the field of agriculture.
A Comparative Study of Javanese Script Classification with GoogleNet, DenseNet, ResNet, VGG16 and VGG19 Susanto, Ajib; Sari, Christy Atika; Rachmawanto, Eko Hari; Mulyono, Ibnu Utomo Wahyu; Mohd Yaacob, Noorayisahbe
Scientific Journal of Informatics Vol 11, No 1 (2024): February 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i1.47305

Abstract

Purpose: Javanese script is a legacy of heritage or heritage in Indonesia originating from the island of Java needs to be preserved. Therefore, in this study, the classification and identification process of Javanese script letters will be carried out using the CNN method. The purpose of this research is to be able to build a model which can properly classify Javanese script, it can help in the process of recognizing letters in Javanese script easily.Methods: In this study, the Javanese script classification process has been used the transfer learning process of Convolutional Neural Network, namely GoogleNet, DenseNet, ResNet, VGG16 and VGG19. The purpose of using transfer learning is to improve the sequential CNN model, processing can be better and optimal because it utilizes a previously trained model.Result: The results obtained after testing in this study are using the transfer learning method, the GoogleNet model gets an accuracy of 88.75%, the DenseNet model gets an accuracy of 92%, the ResNet model gets an accuracy of 82.75%, the VGG16 model gets an accuracy of 99.25% and the VGG19 model gets an accuracy of 99.50%.Novelty: In previous studies, it is still very rare to discuss the Javanese script classification process using the CNN transfer learning method and which method is the most optimal for performing the Javanese script classification process. In this study, it had been resulted find an effective method to be able to carry out the Javanese script classification process properly and optimally.
Capital Optical Character Recognition Using Neural Network Based on Gaussian Filter Astuti, Erna Zuni; Sari, Christy Atika; Syabilla, Mutiara; Sutrisno, Hendra; Rachmawanto, Eko Hari; Doheir, Mohamed
Scientific Journal of Informatics Vol 10, No 3 (2023): August 2023
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v10i3.43438

Abstract

Purpose: As digital technology advances, society needs to convert physical text into digital text. There are now many methods available for doing this. One of them is OCR (Optical Character Recognition), which can scan images [1]–[4] containing writing and turn them into digital text, making it easier to copy written text from an image. Text recognition in images is complex due to variations in text size, color, font, orientation, background, and lighting conditions.Methods: The technique of text recognition or optical character recognition (OCR) in images can be done using several methods, one of which is a neural network or artificial neural network. The artificial neural network method can help a computer make intelligent decisions with limited human assistance. Intelligent decisions can be made because the neural network can learn and model the relationship between nonlinear and complex input and output data. In this research, the scaled conjugated gradient is applied for optimization. SCG is very effective in finding the minimum value of a complex function, but it takes longer than some other optimization algorithms.Result/Findings: The dataset used is an image with a size of 28 x 28 which is changed in dimension to 784 x 1. This research uses 4000 epochs and obtained the best validation result at epoch 3506 with a value of 0.0087446. Results: From the statistical test results, the effect of perceived usefulness on ease of use has the highest level of influence, obtaining a test value of 3.6. Furthermore, the effect of the attitude towards using on the behavioral intention to use has the lowest level of influence, which obtained a test value of 1.2.Novelty:  In this article, Gaussian filter is used as feature extraction to improve yield. Character detection results using a Gaussian filter are known to be almost 10% higher than those using only a neural network. The result with the Neural Network alone is 82.2%, while the Neural Network-Gaussian Filter produces 92.1%.
Comparative Study of Machine Learning Algorithms for Performing Ham or Spam Classification in SMS Astuti, Erna Zuni; Sari, Christy Atika; Rachmawanto, Eko Hari; Ali, Rabei Raad
Scientific Journal of Informatics Vol 11, No 1 (2024): February 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i1.47364

Abstract

Purpose: Fraud is rampant in the current era, especially in the era of technology where there is now easy access to a lot of information. Therefore, everyone needs to be able to sort out whether the information received is the right information or information that is fraudulent. In this research, the process of classifying messages including ham or spam has been carried out. The purpose of this research is to be able to build a model that can help classify messages. The purpose of this research is also to determine which machine learning method can accurately and efficiently perform the ham or spam classification process on messages.Methods: In this research, the ham or spam classification process has been using machine learning methods. The machine learning methods used are the classification process with Random Forest, Logistic Regression, Support Vector Classification, Gradient Boosting, and XGBoost Classifier algorithms. Results: The results obtained after testing in this study are the classification process using the Random Forest algorithm getting an accuracy of 97.28%, Logistic Regression getting an accuracy of 94.67%, with Support Vector Classification getting an accuracy of 97.93%, and using XGBoost Classifier getting an accuracy of 96.47%. The best precision value obtained in this study is 98% when using the random forest algorithm. The best recall value is 94% when using the SVC algorithm. While the best f1-score value is 95% when using the SVC algorithm.Novelty: This research has been compared with several algorithms. In previous research, it is still very rarely done using XGBoost to classify the ham or spam in messages. We focus on giving brief information based con comparison algorithm and show the best algorithm to classify classify the ham or spam in messages. And for the novelty that exists from this research, the machine learning model built gets better accuracy when compared to previous research.
A Roasted Coffee Bean Identification Using ResNet50 Model Aqsel, Aryasatya Muhammad; Rachmawanto, Eko Hari
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11460

Abstract

Identification of coffee types after roasting is a major challenge because visual changes make the appearance of coffee beans diverse. Subjective assessment methods are time-consuming, so digital image processing and CNN techniques show potential to solve complex classification problems. This study develops a ResNet50-based CNN model to identify four types of coffee beans (Robusta, Arabica, Excelsa, and Liberica) after roasting and analyzes the effectiveness of pre-processing and augmentation techniques in improving classification performance. The research employed quantitative methodology with three phases: data collection, pre-processing with augmentation, and CNN implementation. The dataset consisted of 2,000 coffee bean images, with 500 images for each class: Arabica, Excelsa, Liberica, and Robusta, ensuring balanced representation across all coffee varieties  from a local Indonesian coffee supplier, using smartphone. Preprocessing included normalization and resizing, while augmentation comprised various image transformation techniques. Model performance was evaluated using performance metrics. Results showed an overall accuracy of 94.50%, with Liberica demonstrating exceptional performance (100% precision, 98% recall). Robusta achieved 97% precision and 98% recall, while Arabica showed 86.5% precision with 96% recall. Excelsa achieved 95.6% precision and 86% recall. The model successfully classified 378 out of 400 test samples, with Excelsa representing the primary classification challenge due to visual similarity with other varieties post-roasting. Analysis of misclassifications revealed improved distinction between coffee varieties, with the model demonstrating strong generalization capabilities across all classes. The ResNet50 model successfully identified coffee beans with good accuracy but experienced difficulty distinguishing varieties with similar visual characteristics. Future work should explore improved methods and larger datasets for accuracy.
A Two-Stage Braille Recognition System Using YOLOv8 for Detection and CNN for Classification Setiawan, Tan Valencio Yobert Geraldo; Rachmawanto, Eko Hari
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11483

Abstract

Automatic recognition of Braille characters remains a challenge in the field of computer vision, especially due to variations in shape, size, and lighting conditions in images. This research proposes a two-stage system to detect and recognize Braille letters in real time using a deep learning approach. In the first stage, the YOLOv8 model is used to detect the position of Braille characters within an image. The detected regions are then processed in the second stage using a classification model based on the MobileNetV2 CNN architecture. The dataset used consists of 7,016 Braille character images, collected from a combination of the AEyeAlliance dataset and annotated data from Roboflow. To address the class imbalance problem—particularly for letters T to Z which had fewer samples—oversampling and image augmentation techniques were applied that makes the final combined dataset contained approximately 7,616 images. The system was tested on 1,513 images and achieved strong results, with average precision, recall, and F1-score of 0.98, and an overall accuracy of 98%. This two-stage method effectively separates detection and classification tasks, resulting in an efficient and accurate Braille recognition system suitable for real-time applications.
Co-Authors Abdussalam Abdussalam Abdussalam Abdussalam, Abdussalam Abu Salam Adhitya Nugraha Adiyah Mahiruna Agustina, Feri Ahmad Salafuddin Ajib Susanto Akbar Aji Nugroho Akbar, Ilham Januar Al-Ghiffary, Maulana Malik Ibrahim Ali, Rabei Raad Alifia Salwa Salsabila Alvin Faiz Kurniawan Anak Agung Gede Sugianthara Andi Danang Krismawan Annisa Sulistyaningsih Antonio Ciputra Antonius Erick Handoyo Aqsel, Aryasatya Muhammad Ardika Alaudin Arsa Arfian, Aldi Azmi Ariska, Ratih Aryanta, Muhammad Syifa Aryaputra, Firman Naufal Astuti, Yani Parti Asyari, Fajar Husain Aulia, Lathifatul Auni, Amelia Gizzela Sheehan Azzahra, Fidela Bijanto Bijanto Briliantino Abhista Prabandanu Cahaya Jatmoko Cahyo, Nur Ryan Dwi Candra Irawan Candra Irawan Chaerul Umam Chaerul Umam Christy Atika Sari Cinantya Paramita Ciputra, Antonio D.R.I.M. Setiadi Danar Bayu Adi Saputra Danu Hartanto Daurat Sinaga De Rosal Ignatius Moses Setiadi Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Destriana, Rachmat Didik Hermanto Dila Ananda Oktafiani Doheir, Mohamed Doheir, Mohamed Dwi Puji Prabowo Dwi Puji Prabowo, Dwi Puji Egia Rosi Subhiyakto Egia Rosi Subhiyakto Elkaf Rahmawan Pramudya Ellen Proborini Erna Daniati Erna Zuni Astuti Ery Mintorini Faisal, Edi Farrel Athaillah Putra Fazlur Rahman Hafidz Fida Maisa Hana Fidela Azzahra Florentina Esti Nilawati Florentina Esti Nilawati Florentina Esti Nilawati Folasade Olubusola Isinkaye Giovani Ardiansyah Gumelar, Rizky Syah Guruh Fajar Shidik Hadi, Heru Pramono Haryanto, Christanto Antonius Haryanto, Christanto Antonius Hasbi, Hanif Maulana Herman Yuliansyah, Herman Heru Agus Santoso Heru Lestiawan Hidayat, Muhammad Taufiq Hidayati, Ulfa Himawan, Reyshano Adhyarta Hyperastuty, Agoes Santika Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ihya Ulumuddin, Dimas Irawan Imam Prayogo Pujiono Inzaghi, Reza Bayu Ahmad Isinkaye, Folasade Olubusola Islam, Hussain Md Mehedul Istiawan, Deden Istiqomah, Annisa Ayu Ivan Stepheng Kamila, Izza Putri Kas Raygaputra Ilaga Krismawan, Andi Danang Kumala, Raffa Adhi Kunio Kondo Kurniawan, The, Obed Danny Kusuma, Edi Jaya L. Budi Handoko Laksana, Deddy Award Widya Lalang Erawan Latifa, Anidya Nur Liya Umaroh Liya Umaroh, Liya Lucky Arif Rahman Hakim Lungido, Joshua Mabina, Ibnu Farid Mahadika Pradipta Himawan Mahiruna, Adiyah Maulana Malik Ibrahim Al-Ghiffary Md Kamruzzaman Sarker Md Kamruzzaman Sarker Meitantya, Mutiara Dolla Mohammad Rizal, Mohammad Mohd Yaacob, Noorayisahbe Muchamad Akbar Nurul Adzan Muhammad Mahdi Mulyono, Ibnu Utomo Wahyu Munis Zulhusni Musfiqur Rahman Sazal Muslih Muslih Muslih Muslih Nabila, Qotrunnada Nanna Suryana Herman NGATIMIN, NGATIMIN Ningrum, Amanda Prawita Nisa, Yuha Aulia Noor Ageng Setiyanto Noor Ageng Setiyanto, Noor Ageng Noorayisahbe Mohd Yacoob Nova Rijati Novi Hendriyanto, Novi Nugroho, Dicky Anggriawan Nugroho, Widhi Bagus Nur Ryan Dwi Cahyo Nuri Nuri Oktaridha, Harwinanda Oktayaessofa, Eqania Oleiwi, Ahmed Kareem Parti Astuti, Yani Parti Astuti, Yani parti astuti, yani Parti Astuti1, Yani Parti Astuti1, Yani Pradana, Luthfiyana Hamidah Sherly Pradana, Rizky Putra Pradnyatama, Mehta Praskatama, Vincentius Pratama, Reza Arista Pratama, Zudha Pratiwi, Saniya Rahma Proborini, Ellen Pulung Nurtantio Andono Purwanto Purwanto Putra, Ifan Perdana Putri, Ni Kadek Devi Adnyaswari Rabei Raad Ali Rabei Raad Ali Raisul Umah Nur Ramadhan Rakhmat Sani Ratih Ariska Ruri Suko Basuki Safitri, Melina Dwi Saifullah, Zidan Salsabila, Alifia Salwa Sania, Wulida Rizki Santoso, Bagus Raffi Saputra, Danar Bayu Adi Saputro, Fakhri Rasyid Sarker, Md Kamruzzaman Setiarso, Ichwan Setiawan, Fachruddin Ari Setiawan, Tan Valencio Yobert Geraldo Sinaga, Daurat Sinaga, Daurat Sinaga, Daurat Sinaga, Daurat Sofyan, Ega Adiasa Solichul Huda, Solichul Sudibyo, Usman Sudibyo, Usman Sudibyo, Usman Sugianto, Castaka Agus Sumarni Adi, Sumarni Suprayogi Suprayogi Suprayogi Suprayogi Sutrisno, Hendra Syabilla, Mutiara Tan Samuel Permana Tan Samuel Permana Titien Suhartini Sukamto Tri Esti Rahayuningtyas Umah Nur, Raisul Umam, Choerul Umaroh, Liya Umaroh, Liya Utomo, Danang Wahyu Velarati, Khoirizqi Wahyu Dwy Permana Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Winarsih, Nurul Anisa Sri Winaryanti, Hida Sekar Wintaka, Aristides Bima Yaacob, Noorayisahbe Bt Mohd Yaacob, Noorayisahbe Mohd Yani Parti Astuti Zulhusni, Munis