This Author published in this journals
All Journal BERKALA FISIKA Jurnal Harpodon Borneo JURNAL FISIKA Sainteknol : Jurnal Sains dan Teknologi Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains International Journal of Advances in Intelligent Informatics Jurnal Pendidikan Biologi Indonesia Civis: Jurnal Ilmiah Ilmu Sosial dan Pendidikan ETNOSIA : Jurnal Etnografi Indonesia Chemistry in Education JOIV : International Journal on Informatics Visualization Pi: Mathematics Education Journal Jurnal Rekayasa Material, Manufaktur & Energi Jurnal Organisasi Dan Manajemen ILKOM Jurnal Ilmiah Prosiding Seminar Nasional Sains dan Teknologi Terapan IKRA-ITH ABDIMAS Journal of Information Systems and Informatics Jurnal Pendidikan dan Kewirausahaan International Journal of Electrical, Energy and Power System Engineering (IJEEPSE) Jurnal Penelitian Fisika dan Terapannya (JUPITER) Indonesian Journal of Data and Science Dinasti International Journal of Economics, Finance & Accounting (DIJEFA) International Journal of Engineering, Science and Information Technology Best : Journal of Applied Electrical, Science and Technology Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (Senastindo) Brilliance: Research of Artificial Intelligence JURNAL PENDIDIKAN INDONESIA: Teori, Penelitian, dan Inovasi Sapientia Humana : Jurnal Sosial Humaniora Pi: Mathematics Education Journal Room of Civil Society Development Jurnal Ilmiah Ekonomi, Manajemen dan Syariah Jurnal Pengabdian Kolaborasi dan Inovasi IPTEKS Ramatekno Jurnal Penelitian Pendidikan Indonesia International Journal of Artificial Intelligence in Medical Issues Journal Of Public Policy (Social Politics) Sciences (Polisci) TeknoKreatif: Jurnal Pengabdian kepada Masyarakat PASAI : Jurnal Pengabdian kepada Masyarakat Room of Civil Social Development SIMPUL: Jurnal Ilmu Politik dan Hukum Jurnal Ilmu Kesehatan
Claim Missing Document
Check
Articles

Rice Leaf Disease Classification with Machine Learning: An Approach Using Nu-SVM Setiawan, Rudi; Zein, Hamada; Azdy, Rezania Agramanist; Sulistyowati, Sulistyowati
Indonesian Journal of Data and Science Vol. 4 No. 3 (2023): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v4i3.114

Abstract

This study explores the application of machine learning for classifying rice leaf diseases, employing the Nu-Support Vector Machine (Nu-SVM) algorithm, analyzed through a 5-fold cross-validation approach. The research focuses on distinguishing between healthy leaves and those affected by BrownSpot and LeafBlast diseases. The dataset, comprising segmented rice leaf images processed using Sobel edge detection and Hu Moments feature extraction, is utilized to train and test the model. Results indicate a moderate level of accuracy (52.12% to 53.81%) across the cross-validation folds, with precision and recall metrics demonstrating variability and highlighting the challenges in precise disease classification. Despite this, the model maintains a consistent ability to identify true positives. The study contributes to the field of precision agriculture by showcasing the potential and limitations of using machine learning for plant disease diagnosis. It underscores the need for advanced image processing techniques and diverse feature extraction methods to enhance model performance. The findings are pivotal for developing more effective, automated diagnostic tools in agriculture, thereby aiding in better disease management and potentially improving crop yields. This research serves as a foundational step towards integrating machine learning in agricultural disease detection, emphasizing its importance in sustainable farming practices.
Classification of Rice Grain Varieties Using Ensemble Learning and Image Analysis Techniques Setiawan, Rudi; Hayatou Oumarou
Indonesian Journal of Data and Science Vol. 5 No. 1 (2024): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v5i1.129

Abstract

This research explored the efficacy of machine learning techniques, specifically the Bagging meta-estimator, in the classification of rice grain images. Utilizing a dataset composed of 45,000 images of Arborio, Basmati, and Jasmine rice varieties, a 5-fold cross-validation was employed to evaluate the model's performance. The results were highly promising, with the model consistently achieving over 96% in accuracy, precision, recall, and F1-score across all folds, indicating its robustness and reliability. The study confirmed that ensemble learning techniques could significantly improve the classification accuracy over single classifier systems in agricultural applications. The findings offer a significant contribution to automated agricultural processes, suggesting that machine learning can greatly enhance the efficiency and precision of rice variety classification. These results pave the way for further research into the integration of such models into agricultural quality control and provide a foundation for the exploration of advanced image processing and deep learning techniques for improved performance. Future research directions include expanding the model to encompass a wider variety of crops and integrating additional data modalities to refine classification accuracy further. Practical applications should explore the incorporation of this technology into existing agricultural systems to maximize the benefits of automation in quality control.
Design of An Active Power Ankle-Foot Orthosis with Myoelectric Control for Drop-Foot Rehabilitation Setiawan, Rudi; Sabar, Sabar; Madi, Madi
International Journal of Electrical, Energy and Power System Engineering Vol. 4 No. 2 (2021): International Journal of Electrical, Energy and Power System Engineering (IJEEP
Publisher : Electrical Engineering Department, Faculty of Engineering, Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/ijeepse.4.2.139-144

Abstract

Drop-foot is an inability to lift the foot when walking due to muscle weakness or paralysis. One of the common rehabilitation aids for stroke sufferers with drop-foot is Ankle Foot Orthosis (AFO). This tool serves as a stabilizer for road pattern balance. However, most of the AFO used is passive, so it doesn't help users run properly. Therefore, an active AFO system has been designed as a rehabilitation aid. This AFO is designed with motor control from myoelectric feedback signal (EMG) and also a semi-dynamic ankle joint so that it is more flexible to help the user when stepping. The AFO movement set of to the foot's position in Dorsi and Plantarflexion conditions based on the EMG parameter received by the control unit. Then, the angle sensor standardizes the user's ankle position so that the foot fits the states that have set. This design uses the fuzzy logic method, which functions to control the rotation of the servo motor. The interface system is for monitoring parameters. In this design, pressure sensors (force), EMG, and angle sensors transmitted wirelessly to a computer are used for data analysis under the needs of real-time statistical data processing.
Sistem Deteksi Kadar Alkohol Pada Pengemudi Bus Menggunakan Sensor TGS2620 Berbasis Internet Of Things Setiawan, Rudi; Sujono, Hari Agus; Fahruzi, Akhmad; Alfianto, Enggar
Prosiding Seminar Nasional Sains dan Teknologi Terapan 2023: Transformasi Riset, Inovasi dan Kreativitas Menuju Smart Technology dan Smart Energy
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Salah satu penyebab kecelakaan bus adalah pengemudi yang mabuk. Dari beberapa kasus tersebut disebabkan oleh tidak adanya sistem yang dapat mendeteksi bahwa pengemudi dalam keadaan mabuk atau tidak. Sehingga dari permasalahan tersebut dibuatlah sistem deteksi kadar alkohol pada pengemudi bus menggunakan sensor TGS2620 berbasis IOT (Internet of Things). Tujuan dari penelitian ini yaitu untuk merancang dan membuat sistem deteksi kadar alkohol pada pengemudi bus menggunakan sensor TGS2620 bebasis Internet of Things, membuat sistem Internet of Things melalui platfom android untuk mengirim data kondisi pengemudi berupa notifikasi ke kantor pusat dan driver, dan mengetahui tingkat akurasi dan kepresisisan pembacaan sensor gas TGS2620 untuk mendeteksi kadar alkohol pada pengemudi bus. Metode dalam penelitian ini yaitu mendeteksi kadar alkohol pada nafas pengemudi bus sebelum melakukan keberangkatan. Untuk komponen yang digunakan pada sistem ini adalah ESP32 sebaga imicrocontrollerkemudian menggunakan sensor TGS2620 sebagai deteksi kadar alkohol. Alat tersebut akan mendeteksi apakah pengemudi dalam keadaan mabuk atau tidak. Hasil deteksi tersebut ditampilkan pada LCD dan dikirimkan ke aplikasi smartphone sebagai laporan. Jika pengemudi dalam keadaan mabuk maka buzzer pada alat tersebut aktif dan tertera notifikasi pada LCD bahwa pengemudi dalam keadaan mabuk.Pengujian akurasi karakteristik yang dilakukan dalam penelitian ini meliputi Pengujian Buzzer, Pengujian LCD (Liquid Crystal Display), Pengujian NodeMCU ESP32, Program IDE Arduino, dan Pengujian Sensor TGS2620. Sehingga didapatkan hasil yaitu sensor 1 memiliki akurasi sebesar 91,3% dan rata rata presentasi error sebesar 8,7%, sedangkan sensor 2 memiliki akurasi sebesar 88,9% dan rata-rata presentasi error sebesar 11,1%, dimana hasil tersebut dapat disimpulkan bahwa sensor TGS2620 dapat berfungsi dengan baik sesuai perencaan awal, karena Sensor TGS2620 sangat sensitif dalam mendeteksi gas alkohol yang mudah menguap.
Interpretation of Building Maintenance Factors on Employee Convenience at The Factory of PT Campina Ice Cream Industry Tbk Setiawan, Rudi; Durrotun Nasihien, Ronny; Sutapa, I Ketut; Irwansyah, Defi
International Journal of Engineering, Science and Information Technology Vol 4, No 1 (2024)
Publisher : Department of Information Technology, Universitas Malikussaleh, Aceh Utara, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v4i1.481

Abstract

Buildings are an essential part of human life. Building maintenance is carried out to provide security and comfort for building users. This study aims to determine and analyze the implementation of building maintenance, the influence of maintenance factors on building maintenance, and what maintenance factors have a dominant influence on the comfort of building users at PT. Campina Ice Cream Industry Tbk. This study uses a quantitative approach to data collection using a questionnaire. The population used in this study were employees at the PT. Campina Ice Cream Industry Tbk has a total of 520 employees. Meanwhile, the research sample was 72 employees at PT. Campina Ice Cream Industry Tbk. The data was tested using the validity test and reliability test. The analytical method used is multiple linear regression analysis with hypothesis testing using the t-test. The study results show that the condition of building maintenance is carried out at the factory of PT. Campina Ice Cream Industry Tbk, through architectural, mechanical, and electrical maintenance, has been carried out well, starting from wall and window maintenance and wall/glass cleaning, properly providing and maintaining health facilities, and holding office facilities and infrastructure, especially in regular electrical installations. The results of the t-test show that architectural, mechanical, and electrical maintenance has a significant effect on comfort. The building maintenance variable that has the dominant influence on comfort is the electrical maintenance variable.
Analysis of Frequently Appearing Words in the Titles of 2023 Research Grant Winners in Indonesia Using the TF-IDF Method Setiawan, Rudi; Kisman, Zainul; Imam, Asep
Journal of Information System and Informatics Vol 5 No 4 (2023): Journal of Information Systems and Informatics
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v5i4.599

Abstract

Research activities are an obligation to be carried out by a lecturer, each year the Government of Indonesia through the Ministry of Education, Culture, Research and Technology encourages the improvement of research through a large amount of research funding aid through several schemes of grant competition. By 2023, the percentage of proposals funded was only 22.7% of the total of research proposals submitted as 28.404. One of the problems that arises for the lecturer who follows the research grant is to determine the title of the research. The research aims to identify the words that often appear on the research titles that escape funding from each grant scheme by performing word grinding using the TF-IDF method. The results of this research indicate that in the novice lecturer research grant scheme (PDP) the word that often appears is the word "based" with a total of 434 proposals, in the regular fundamental research (PFR) the word that often appears is "development" of 374 proposals , domestic cooperation research (PKDN) the word that often appears is "based" with 117 proposals, post-graduate research doctoral dissertation research (PPS-PDD) the word that often appears is "model" with 154 proposals, in post-graduate research master's thesis research (PTS-PTM) words that often appear "based" are 191 proposals and in the downstream applied research scheme (PT-JH) words that often appear "based" are 82 proposals. This research can provide an overview of the names of titles funded based on the highest number of occurrences of a word from all titles funded. The words "based", "development" and "model" are the 3 largest words that appear in the titles of proposals funded in the PFR, PKDN, PPS-PDD, PPS-PTM, and PT-JH schemes. For the PDP scheme, the order of the 3 largest words that appear in the title of the proposal is "based", "regency", and "development".
Assessing Bagging-meta Estimator in Imbalanced CT Kidney Disease Classification: A Focus on Sobel and Hu Moment Techniques Setiawan, Rudi; Kadir Parewe, Andi Maulidinnawati Abdul; Latipah, Asslia Johar; Puji Astuti, Nur Rochmah Dyah; Murdiyanto, Aris Wahyu; Putra, Fajri Profesio
International Journal of Artificial Intelligence in Medical Issues Vol. 1 No. 2 (2023): International Journal of Artificial Intelligence in Medical Issues
Publisher : Yocto Brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijaimi.v1i2.100

Abstract

This study investigates the efficacy of the Bagging-meta estimator in classifying CT kidney diseases, focusing on an imbalanced dataset processed through Sobel segmentation and Hu moment feature extraction. The research utilized a quantitative approach, applying the Bagging-meta estimator to a dataset comprising CT images classified into four categories: Normal, Cyst, Tumor, and Stone. These images were preprocessed using Sobel segmentation to highlight critical structures and Hu moment feature extraction for robust classification features. The study employed a 5-fold cross-validation method to evaluate the model's performance, assessing metrics such as accuracy, precision, recall, and F1-Score. The results indicated a significant variation in the model's performance across different folds, with accuracy ranging from 49.86% to 66.17%, precision between 51.86% and 65.93%, recall from 57.95% to 64.44%, and F1-Scores spanning 48.26% to 60.74%. These findings suggest that while the Bagging-meta estimator can achieve reasonable accuracy in classifying kidney diseases from CT images, its performance is affected by the imbalanced nature of the dataset. This study contributes to the understanding of the challenges and potential of machine learning in medical imaging, particularly in the context of imbalanced datasets. It highlights the need for specialized approaches to handle such datasets and underscores the importance of preprocessing techniques in enhancing model performance. Future research directions include exploring methods to address data imbalance, investigating alternative feature extraction techniques, and testing the model on diverse datasets to enhance its generalizability and reliability in clinical settings. This research offers valuable insights into the development of automated diagnostic tools in medical imaging and advances the field of computer-aided diagnosis in nephrology.
PERSEPSI MASYARAKAT TERHADAP PENGELOLAAN MANGROVE DI DESA LIMA LARAS, KECAMATAN TALAWI, KABUPATEN BATU BARA Rumondang, Rumondang; siregar, umaiyu; Setiawan, Rudi; Siagian, Apriansyah Dharmawan
Jurnal Harpodon Borneo VOLUME 16 NO.2 OKTOBER 2023
Publisher : Fakultas Perikanan Dan Ilmu Kelautan Universitas Borneo Tarakan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35334/harpodon.v16i2.3632

Abstract

Kabupaten Batu Bara merupakan satu diantara Kabupaten yang berada di Provinsi Sumatera Utara yang memiliki hutan mangrove yang luas dikarenakan letaknya yang berada di dekat pesisir. Hutan mangrove merupakan salah satu keanekaragaman hayati yang memiliki manfaat untuk kehidupan manusia yang yang tinggal di kawasan ekosistem mangrove. Tujuan penelitian ini adalah untuk mengetahui persepsi dan sikap masyarakat terhadap pengelolaan mangrove di Desa Lima Laras, Kecamatan Talawi, Kabupaten Batu Bara. Penelitian ini menggunakan metode survei dengan pengambilan sampel menggunakan metode purposive sampling. Analisis data dalam penelitian ini menggunakan Skala Likert untuk mengetahui persepsi masyarakat terhadap pengelolaan mangrove. Jumlah responden sebanyak 22 orang dengan menggunakan rumus Slovin. Hasil penelitian menunjukkan tingkat persepsi masyarakat terhadap mangrove di Desa Lima Laras, Kecamatan Talawi, Kabupaten Batu Bara memiliki skor tertinggi yaitu 4,5 dan skor terendah yaitu 2,7. Tingginya persepsi menandakan bahwa masyarakat memiliki pemahaman dan pengetahuan yang baik serta menyadari bahwa mangrove sangat penting untuk kehidupan mereka. Kata kunci: Abrasi, Akuatik, Ekosistem Mangrove
PENGUATAN KOPERASI KARTINI MANDIRI LESTARI DESA PASAREAN KECAMATAN PAMIJAHAN KABUPATEN BOGOR Setiawan, Rudi; Ramayanti, Rizka
Jurnal Pengabdian Kolaborasi dan Inovasi IPTEKS Vol. 1 No. 4 (2023): Agustus
Publisher : CV. Alina

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59407/jpki2.v1i4.66

Abstract

Koperasi sebagai unit usaha bersama yang dimiliki oleh para anggotanya tentu saja membutuhkan pengelolaan yang baik dan transparan serta pengelola koperasi hendaknya berperan aktif dalam menjalankan perannya membina para anggotanya agar dapat maju dan tumbuh bersama dalam membangun usaha. dalam perjalanan pendirian koperasi kartini mandiri lestari hingga saat ini masih terdapat sejumlah tantangan yang dihadapi diantaranya adalah permasalahan teknis operasional Koperasi yang masih dilakukan secara manual, tantangan lain datang dari minimnya pengetahuan manajemen usaha anggota koperasi sehingga usaha yang dibangun cenderung tidak bertahan lama. Pada kegiatan pengabdian masyarakat ini dilakukan upaya pemecahan masalah yang ada pada koperasi kartini mandiri lestari dengan kegiatan berupa sosialisasi, pelatihan, pendampingan dan implementasi aplikasi koperasi serta dilakukan monitoring dan evaluasi dari setiap kegiatan. Hasil evaluasi kegiatan sosialisasi penyusunan laporan keuangan dan biaya produksi menyatakan telah terjadi peningkatan pemahaman peserta sebesar 74.07%, sedangkan penilaian interpretasi pengguna terhadap aplikasi koperasi mencapai 80% dalam kategori layak di implementasikan.  Kata Kunci: Penguatan Koperasi, Koperasi, Aplikasi Koperasi, Laporan Keuangan,
The ethnography of police: Communication barriers in Mesuji conflict, Indonesia Setiawan, Rudi; Mashud, Mustain; Sparingga, Daniel; Nurdin, Bartoven Vivit; Asnani, Asnani
ETNOSIA : Jurnal Etnografi Indonesia Vol. 8 No. 2 (2023)
Publisher : Department of Anthropology, Faculty of Social and Political Sciences, Hasanuddin University.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31947/etnosia.v8i2.26320

Abstract

This research examines the experiences of police working in conflict areas, how they adapt to situations that are prone to conflict, including their views on the conflicting parties, namely the community, companies and local governments as well as the communication barriers they experience with the new culture. This research focuses on the stories of the duties of Bintara, namely the police with the lowest rank in the police structure in conflict areas in Mesuji Regency, Lampung Province, Indonesia. The stories of Bintara who served in this conflict area are very interesting to study and analyze after conducting long research on their lives. This study uses an ethnography approach with qualitative methods, where in-depth interviews and observation are data collection techniques. The results of this study indicate that there is no non-commissioned officer who wants to be placed in a tense area because of the conflict, threats to life that always loom, skin diseases, no clean water source, poisoned food, and communication barriers with the community are one cause, namely stereotypes and prejudices against conflict area communities. The stories of the police on duty as a result of this research are full of tension and life threats are explored in ethnography.
Co-Authors Adi Pamungkas Agustiany, Fifin Arifiani Aisyah Rahmawati Andreas N, R Djoko Ani Haryani, Ani Aprianti, Penti Arif Setiawan , Andi Aris Wahyu Murdiyanto Aritonang, Sovian Asep Ahmad Sopandi Asnani Asnani Aulia Safitri, Aulia Azdy, Rezania Agramanist Azzahra, Haliza Bartolomeus Samho Bartoven Vivit Nurdin Bernard Dehaan, Yeovan Naufal Chairunnisa, Devina Azzahra Cristofer, Fernando Daulay, Okky Freeza Dede Hertina Dedet Erawati Dermawijaya, Boyke Iskandarsyah Dewi, Fitria Dewi, Manda Iska Eddy, Syaiful Elsa Efrina Elvi Yenie, Elvi Enggar Alfianto Etty Puji Lestari Fahruzi, Akhmad Fatmawati, Fatmawati Grahita Kusumastuti, Grahita Hakim Santoso, Abdul Hamada Zein Hari Agus Sujono Hartono, Ahmat Dwi Hayatou Oumarou Heri Sutanto Herninda, Amalia Revy I Ketut Sutapa Ida Zahrina Imam, Asep Indiriani, Dini Irawan, Ghani Rafif Irwansyah, Defi Iskandar Mirza Istiqomah, Hilmi Aulia Janizal Jarwinda, Jarwinda Jayawarsa, A.A. Ketut Juhana, Riyadi Kadir Parewe, Andi Maulidinnawati Abdul Kholida, Putri Kisman, Zainul Laksono, Muharram Budi Latipah, Asslia Johar Madi, Madi Margianto, Tofik Marlina Marlina Mashud, Mustain Mega Iswari Nuhan, Hudan Khalish Nurhasan Nugroho Nurwijayanti Oscar Yasunari Pambudi, Wisnu Setyo Pratama, Gerald Untirtha Priyanto, Rachmat Puji Astuti, Nur Rochmah Dyah Purwoko, Agus Putra, Fajri Profesio Putri, Sherlyana Hardiyandeffi Rahmadi, Isnaini Rahmahtrisilvia Rahmahtrisilvia Rahman, Titik Khawa Abdul Ramayanti, Rizka Rio Febrianto Arifendi, Rio Febrianto Ronny Durrotun Nasihien, Ronny Durrotun Rozak, Abd Rumondang, Rumondang Sabar Sabar Sdarmin Sudarmin, Sdarmin Setiawan, Cahya Heru Siagian, Apriansyah Dharmawan Siburian, Marsudi siregar, umaiyu Siti Khumayah Sparingga, Daniel Sri Ernawati Sulistyowati Sulistyowati Sumarmi Sunarno Sunarno Supriyadi Supriyadi Supriyanto, Adolf Asih Susilo Susilo Sutikno Sutikno Syahputra, Ahmad Reynaldi Syahrizal Nasution Syaripudin Syaripudin Thahyo Subroto, Thahyo Umar Al Faruq Wahyuningtyas, Amalia Wibowo, Nanang Roni Widodo YOSAN, R BAGUS Yoseptry, Ricky Yulianti, Wayan Rifa Zaenal Arifin Zulmiyetri Zulmiyetri