Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Intelligent Computing and Health Informatics (JICHI)

Modelling of Dengue Hemorrhagic Fever Disease in Semarang City Using Generalized Poisson Regression Model Septia, Siti Fajar; Hidayat, Muhamad Arif; Asyfani, Yusrisma; Haris, M. Al; Winaryati, Eny
Journal of Intelligent Computing & Health Informatics Vol 4, No 2 (2023): September
Publisher : Universitas Muhammadiyah Semarang Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26714/jichi.v4i2.12769

Abstract

Dengue Hemorrhagic Fever (DHF) is an infectious disease that can be life- threatening within a relatively short period of time and can be fatal if not promptly treated. DHF in Indonesia ranks second as a dangerous seasonal disease. DHF remains a serious issue in the Central Java Province, particularly in Semarang City. The cases of DHF can be modeled using a Poisson regression model due to the characteristics of DHF cases, which involve count data with small occurrence probabilities. The Poisson regression model assumes equality between the mean and variance (equidispersion). However, the application of the Poisson regression model often encounters violations of the assumption of excessive variance (overdispersion), which necessitates addressing the violation, and one possible approach is to use the Generalized Poisson Regression model. Based on the analysis results, the Generalized Poisson Regression model could handle the overdispersion because the ratio of Pearson Chi-Square by degrees of freedom was 0.976, approaching a value of 1. It has also been proven to be more suitable for evaluating factors influencing the number of DHF cases, as it has a lower AIC value compared to Poisson models, with a value of 123.64. The variables that were found to have an impact on DHF cases in Semarang City based on the Generalized Poisson Regression model are the number of larval habitats (X1), the number of hospitals (X2), population density (X3), and the number of healthcare workers (X4).
Co-Authors Abdul Aziz Adiningsih, Tri Darma Aditama, Madya Giri Afifah Arum Aningtyas Alwan Fadlurohman Ambarwati, Eni Anasa, Firyal Afaf Andi, Sofyan Andriani, Dinny Arianty, Alya Dwi ARIF KURNIAWAN Arifin, Achmad Januar Astuti, Etin Yuli Asyfani, Yusrisma Daing, Crisanto A. Darojah, Zakiya Dian Wulandari Dodi Mulyadi Dwi Lestari Edy Sutanto Eko Andy Purnomo Eko Yuliyanto, Eko Endang Tri Wahyuni Maharani Febriani, Hanifah Guarin, Rica Mae Hasthanti, Sri Walji Heri Dwi Santoso, Heri Dwi Heryani, Desiana Heryati, Devi Putri Hidayat, Muhamad Arif Ibrahim, Kafitra Marna Ikhsan, Zanaton H Iksan, Zanaton Haji Iwan junaedi Jayawarsa, A.A. Ketut Khoirunisa, Asiva Kusnita, Kusnita M. Al Haris Majid, Muhammad Naufal Martini, Dina Milaningsih, Inca Pritomasya Milaningsih, Inca Pritonasya Muhamad Taufik Hidayat Muhimatul Ifadah Munsarif, Muhammad Muntasiroh, Laily Muttaqin, Aris Nur, Aufa Rafika Nurdiana, Lizza Parjiyem, Parjiyem Prasetyawan Aji Sugiharto Prihartanti, Ariani Purnomo, Aris Dian Putri, Regina Amelia Qumariyatul Intani R, Rizka Rahmawati, Nabila Rauf, Rose Amnah Abd Riana Eka Budiastuti, Riana Eka Risqi, Saiful Ristanti, Dwi Anggraeni Rizka Salaffudin, Affan Salsabila, Meirza Septia, Siti Fajar Setia Iriyanto Setiawan, Reffi Naufal Setyanti, Siska Pris Siti Aimah Siti Aminah Siti Aminah Soffiani, Febbry Sulthan, Faqih Sumarno . Supriadi, Andri Suyata Suyata Syarifa, Gizha Testiana Deni Wijayatiningsih Tri, Endang Utomo Wibisana, Mohammad Andre Wibowo, Arim Yulia Mutmainnah Yusrin, Yusrin