Articles
ANALISIS KETERAMPILAN METAKOGNISI SISWA DALAM MEMECAHKAN MASALAH SPLDV DI SMP NEGERI 4 MALANG
Nurul Ma’rifah;
Akbar Sutawidjaja;
I Made Sulandra
Jurnal Kajian Pembelajaran Matematika Vol 5, No 2 (2021): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.17977/um076v5i22021p54-62
This qualitative descriptive study aims to describe the metacognitive skills of 3 class VIIIA students of SMP Negeri 4 Malang in solving mathematical problems related to the Two Variable Linear Equation System (SPLDV). The three subjects respectively had high, medium and low abilities based on the initial test of SPLDV. Data were collected through written tests, metacognitive skills self-assessment questionnaires, and interviews. The data were analyzed using three components of metacognitive skills, namely planning, monitoring and evaluation skills. The results showed that subjects with high and moderate abilities met the indicators of planning skills A1, A2 and A3, while subjects with low abilities met the indicators of planning skills A3. The monitoring skills of subjects with high and low abilities meet two indicators B1 and B2, while subjects with moderate abilities only meet one indicator, namely B1. In the evaluation skills of the three research subjects only met one indicator, namely C1.
PEMBELAJARAN BERBASIS MASALAH UNTUK MENINGKATKAN PEMAHAMAN MATEMATIKA SISWA KELAS IX SMP
Gutomo Wibi Ananggih;
Ipung Yuwono;
I Made Sulandra
Jurnal Kajian Pembelajaran Matematika Vol 1, No 1 (2017): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (991.178 KB)
Based on observations found that students can not explain the concept that already taught and also can not give examples of problems in everyday life related to the concept being taught. It shows that students do not have the ability to be an indicator of understanding. Based on interviews found that teachers often use the problem-based learning, but in the implementation tends to the teacher centered learning. To solve the that problems then held action classroom research that used problem-based learning. With problem-based learning can enhance an understanding that shown by student have an ability to correspond with the seven indicators of understanding. Problem-based learning that has been able to increase the students' understanding of mathematics consists of five stages, namely: a) Reading problems. b) Defining the problem. c) Find the idea "Brainstroming". d) Solve the problem. e) Share learning result. Learning has developed seven indicators of mathematical understanding, namely: interpretation, exampling, classify, summarize, inferring, comparing, and explaining. Each indicator score, then score is accumulated into a final score. Resulting 83% of all students, ie 29 of 35 the number of classes students have had a score of more than or equal to 75. In fact, there are two students who received a score of 100.
PEMBELAJARAN BERBASIS INKUIRI UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS
Izzatul Yazidah;
Edy Bambang Irawan;
I Made Sulandra
Jurnal Kajian Pembelajaran Matematika Vol 4, No 1 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (297.16 KB)
21st century human competence is creativity and innovation, communication and collaboration, as well as critical thinking and problem solving. Critical thinking skills need to be possessed by students. Students who have the ability to think critically will tend to respect and respect others. These characteristics are very important for future generations to live in the modern world. One learning that is expected to be able to train and improve critical thinking skills is inquiry-based learning. Inquiry-based learning is a learning process by formulating questions, processing ideas, exploring and evaluating information, analyzing data, and finding relationships and conclusions. Inquiry-based learning emphasizes the process of thinking critically and analytically to seek and find their own solutions to a proposed problem. Inquiry-based learning involves students actively seeking answers to questions or problems. In this case the writer refers to the inquiry training developed by Richard Suchman. The existence of inquiry-based learning is expected to motivate and direct learning that is oriented towards increasing critical thinking skills.
STRUKTUR ARGUMENTASI PENALARAN KOVARIASIONAL SISWA KELAS VIIIB MTsN 1 KEDIRI
Ulumul Umah;
Abdur Rahman Asari;
I Made Sulandra
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 1, No 1: Maret - Agustus 2016
Publisher : Universitas Pesantren Tinggi Darul Ulum Jombang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.26594/jmpm.v1i1.498
Argumen matematis siswa tingkat dasar hingga sekolah menengah sering sulit dikaitkan dengan pembuktian matematis formal. Model Argumen Toulmin menawarkan suatu pendekatan untuk menganalisis argumen yang sangat berbeda dengan pendekatan logika formal. Studi ini bertujuan untuk mendeskripsikan struktur argumentasi siswa kelas VIIIB MTsN 1 Kediri ketika menyelesaikan masalah kovariasi berdasarkan teori argumentasi Toulmin. Hasil penelitian ini mengungkapkan bahwa subjek belum memiliki struktur argumen yang lengkap. Secara umum subjek membangun argumen secara induktif. Peran “backing” menjadi esensial ketika argumen subjek didukung oleh contoh-contoh kasus yang mengantarkan pada suatu kesimpulan, sementara “qualifier” dan “rebuttal” tidak muncul pada struktur argumen mereka.
Kemampuan Pemecahan Masalah Open-Ended Siswa SMP Berdasarkan Tahapan Polya
Ni Putu Gita Arilaksmi;
Susiswo Susiswo;
I Made Sulandra
Vygotsky : Jurnal Pendidikan Matematika dan Matematika Vol 3, No 1 (2021): Vygotsky: Jurnal Pendidikan Matematika dan Matematika
Publisher : Universitas Islam Lamongan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (419.957 KB)
|
DOI: 10.30736/voj.v3i1.346
Mendeskripsikan kemampuan pemecahan masalah open-ended siswa berdasarkan tahapan Polya ialah tujuan penelitian ini. Penelitian ini menggunakan pendekatan deksriptif pada metode kualitatif. Penelitian dilaksanakan di SMPN 21 Malang pada kelas VIII.6, dengan menyaring siswa menjadi tiga yang mewakili kemampuan matematika tinggi, sedang, dan rendah. Peneliti sendiri, tes masalah open-ended, dan pedoman wawancara ialah instrument yang digunakan. Siswa berkemampuan matematika tinggi mempunyai kemampuan sangat baik dalam memecahkan masalah dan memenuhi keempat tahapan Polya. Siswa berkemampuan matematika sedang memenuhi tiga tahapan Polya tanpa mengecek kembali dan dapat dikategorikan baik. Siswa berkemampuan matematika rendah tidak memenuhi keempat tahapan pemecahan masalah Polya dan dikategorikan kurang baik.
Analisis Kemampuan Penalaran Analogis Siswa SMP dalam Menyelesaikan Masalah Matematika
Mohammad Ridhoi;
I Made Sulandra;
Sukoryanto Sukoryanto;
Toto Nusantara
Jurnal Pendidikan Matematika dan Sains Vol 8, No 1 (2020): June 2020
Publisher : Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21831/jpms.v8i1.19649
Penalaran analogi secara khusus mempunyai peran penting dalam pelajaran matematika. Penalaran analogi dapat digunakan untuk membantu menyelesaikan masalah matematika, jika siswa dapat menggunakan pengetahuan yang telah dipelajari sebelumnya untuk menyelesaikan masalah yang baru. Berdasarkan hal tersebut maka penelitian ini dilakukan untuk mendeskripsikan bagaimana kemampuan penalaran analogi siswa dalam menyelesaikan masalah matematika. Penelitian ini merupakan penelitian deskriptif dengan pendekatan kualitatif. Penelitian ini dilaksanakan di kelas VIIA SMP Brawijaya Smart School. Subjek penelitian terdiri dari 25 orang siswa. Berdasarkan hasil tes, siswa di kelompokan dalam 3 kelompok yaitu kelompok kemampuan penalaran analogi rendah (A1), kelompok kemampuan penalaran analogi sedang (A2), dan kelompok kemampuan penalaran analogi tinggi (A3). Hasil penelitian menunjukkan kemampuan penalaran analogi siswa secara umum masih rendah.
Analisis Kemampuan Pemahaman Matematika dalam Menyelesaikan Soal Cerita Materi Bangun Ruang
Allifia Nur Chasanah;
Abdur Rahman As’ari;
I Made Sulandra
Jurnal Pendidikan Matematika dan Sains Vol 9, No 2 (2021): December 2021
Publisher : Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21831/jpms.v9i2.31642
Penelitian ini bertujuan untuk mendeskripsikan pemahaman siswa dalam menyelesaikan soal cerita pada materi bangun ruang. Penelitian kualitatif ini dilakukan menggunakan metode deskriptif. Partisipan yaitu siswa kelas VIII di salah satu MTsN di Ponorogo yang dipilih melalui pertimbangan hasil tes dan tanggapan guru. Instrumen terdiri dari soal pemecahan masalah, pedoman wawancara, dan angket yang di validasi. Tes yang dikerjakan siswa diberi skor dan dilakukan analisis terhadap kesalahan jawaban. Angket digunakan untuk memperoleh informasi tentang tanggapan siswa dalam menyelesaikan masalah. Hasil penelitian menunjukkan sebagian besar siswa masih kesulitan mengerjakan soal cerita bangun ruang. Siswa dengan kemampuan pemecahan masalah tinggi dapat mengerjakan soal dengan benar. Siswa dengan kemampuan pemecahan masalah tinggi juga dapat menjelaskan pemahamannya terkait soal dengan baik. Siswa dengan kemampuan pemecahan masalah sedang mampu mengerjakan soal tes baik, namun dalam pengerjaannya mengalami kesalahan dalam menafsirkan informasi sehingga menyebabkan kesalahan pada penyelesaiannya. Siswa dengan kemampuan pemecahan masalah rendah cukup mengalami kesulitan dalam menyelesaikan soal tes yang diberikan.
Student Argumentation Structure in Solving Statistical Problems Based on Adversity Quotient
Iffanna Fitrotul Aaidati;
Subanji Subanji;
I Made Sulandra;
Hendro Permadi
Jurnal Pendidikan Matematika Vol 16, No 2 (2022)
Publisher : Universitas Sriwijaya
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22342/jpm.16.2.16633.121-140
Evaluation of the argumentation structure is needed to check the quality of student argumentation to produce appropriate problem-solving. Such evaluation can be carried out by identifying the constituent components of the argument. This study aims to describe the structure of student argumentation in solving statistical problems based on the Adversity Quotient (AQ). This qualitative descriptive type of research involved 52 students who were taking statistical methods courses. Participants were classified into three Categories of Adversity Quotient based on the results of the ARP (Adversity Response Profile) questionnaire. Data were obtained using statistical problem tests and interviews. The results showed that students with the AQ Climber category were able to meet all the constituent components of argumentation when solving statistical problems. AQ Camper-type students are only able to meet three components, namely claims, evidence, and reasoning. Meanwhile, students with the AQ Quitter type are only able to fulfill one component, namely claims. Based on the results of the study, the level of Adversity Quotient determines the quality of the student's argumentation structure when solving statistical problems.
Karakterisasi Contoh Spontan Guru Pemula Dalam Pembelajaran Matematika
Selly Meinda Dwi Cahyaningsih;
Subanji Subanji;
I Made Sulandra
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 12: DESEMBER 2019
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.17977/jptpp.v4i12.13095
Abstract: The purpose this study is to explore characterization of teacher's spontaneous example. Type a study is deskriptif kualitatif, subject is beginner teacher. The results show that three spontaneous examples characterization of beginner teacher such that illustrative spontaneous examples, clarified spontaneous examples, and confirmatory spontaneous examples. Illustrative spontaneous examples is given beginner teacher to illustrate students difficulty and explaned the new topic. Clarified spontaneous examples is given beginner teacher to clarified students difficulty and students error. Confirmatory spontaneous examples is given beginner teacher to confirm mathematics concept and understanding of students contents.Abstrak: Penelitian ini bertujuan untuk mengeksplorasi karakterisasi contoh spontan guru dalam pembelajaran matematika. Jenis penelitian yang digunakan yaitu kualitatif deskriptif, dengan subjek penelitian guru matematika pemula. Hasil penelitian menunjukan bahwa tiga karakterisasi contoh spontan guru pemula yaitu contoh spontan ilustratif, contoh spontan klarifikatif dan contoh spontan konfirmatif. Contoh spontan ilustratif diberikan guru pemula untuk mengilustrasikan masalah kesulitan yang dialami siswa. Contoh spontan klarifikatif diberikan guru pemula untuk mengklarifikasi kesalahan siswa. Contoh spontan konfirmatif diberikan guru pemula untuk mengonfirmasi bahwa siswa telah memahami materi yang dibahas.
Proses Berpikir Siswa Field Dependent dalam Menyelesaikan Masalah Geometri Berdasarkan Tahapan Polya
Agus Hidayat;
Cholis Sa'dijah;
I Made Sulandra
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 7: JULI 2019
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (811.696 KB)
|
DOI: 10.17977/jptpp.v4i7.12634
Abstract: This study aims to describe the thinking process of field dependent students in solving geometric problems based on the Polya stage. The type of research used was descriptive qualitative. The study was conducted at SMA 1 Pasuruan using 2 subjects in the cognitive style FD taken from 38 students. The instruments used were in the form of cognitive style exams, solving geometrical problems and interview guidelines. The results of the study show that in processing information, the subject of FD does not understand the problem as a whole so that in planning the completion of the subject FD forgets about the concept of the cube. Abstrak: Penelitian ini bertujuan untuk menggambarkan proses berpikir siswa field dependent dalam menyelesaikan masalah geometri berdasarkan tahapan Polya. Jenis penelitian yang digunakan adalah deskriptif kualitatif. Penelitian dilakukan di SMA Negeri 1 Pasuruan dengan menggunakan dua subjek bergaya kognitif FD yang diambil dari 38 siswa. Instrumen yang digunakan berupa eksamen gaya kognitif, penyelesaian masalah geometri dan pedoman wawancara. Hasil penelitian memperlihatkan bahwa dalam memproses informasi, subjek FD tidak memahami masalah secara utuh sehingga dalam merencanakan penyelesaian subjek FD lupa tentang konsep kubus.