Claim Missing Document
Check
Articles

On Sombor Energy of the Nilpotent Graph of the Ring of Integers Modulo ε Putra, Lalu Riski Wirendra; Albaracin, Jimboy R.; Wardhana, I Gede Adhitya Wisnu
Journal of the Indonesian Mathematical Society Vol. 31 No. 3 (2025): SEPTEMBER
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.v31i3.1856

Abstract

In chemical graph theory, chemical compounds are represented as graphs where atoms are represented as vertices, and the bonds connecting the atoms are represented as edges. In 2021, Gowtham and Swamy discovered another type of graph energy, called the Sombor energy. This discovery was motivated by Gutman's introduction of the Sombor index in the same year. In the field of abstract algebra, rings can also be represented as graphs. In this article, we aim to explore the Sombor energy of some nilpotent graphs of rings, particularly the ring of integers modulo ε.
THE HARMONIC INDEX AND THE GUTMAN INDEX OF COPRIME GRAPH OF INTEGER GROUP MODULO WITH ORDER OF PRIME POWER Husni, Muhammad Naoval; Syafitri, Hanna; Siboro, Ayes Malona; Syarifudin, Abdul Gazir; Aini, Qurratul; Wardhana, I Gede Adhitya Wisnu
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (354.985 KB) | DOI: 10.30598/barekengvol16iss3pp961-966

Abstract

In the field of mathematics, there are many branches of study, especially in graph theory, mathematically a graph is a pair of sets, which consists of a non-empty set whose members are called vertices and a set of distinct unordered pairs called edges. One example of a graph from a group is a coprime graph, where a coprime graph is defined as a graph whose vertices are members of a group and two vertices with different x and y are neighbors if only if (|x|,|y|)=1. In this study, the author discusses the Harmonic Index and Gutman Index of Coprime Graph of Integer Group Modulo n. The method used in this research is a literature review and analysis based on patterns formed from several case studies for the value of n. The results obtained from this study are the coprime graph of the group of integers modulo n has the harmonic index of and the Gutman index for where is prime and is a natural number.
THE INTERSECTION GRAPH REPRESENTATION OF A DIHEDRAL GROUP WITH PRIME ORDER AND ITS NUMERICAL INVARIANTS Ramdani, Dewi Santri; Wardhana, I Gede Adhitya Wisnu; Awanis, Zatta Yumni
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (357.019 KB) | DOI: 10.30598/barekengvol16iss3pp1013-1020

Abstract

One of the concepts in mathematics that developing rapidly today is Graph Theory. The development of Graph Theory has been combined with Group Theory, that is by representing a group in a graph. The intersection graph from group , noted by , is a graph whose vertices are all non-trivial subgroups of group and two distinct vertices are adjacent in if and only if . In this research the intersection graph of a Dihedral group, we looking for the shapes and numerical invariants. The results obtained are if for , then has a subgraphs and subgraphs , the girth of the graph is 3, radius and diameter of the graph in a row is 2 and 3, and the chromatic number of the graph is
THE POWER GRAPH REPRESENTATION FOR INTEGER MODULO GROUP WITH POWER PRIME ORDER Putra, Lalu Riski Wirendra; Awanis, Zata Yumni; Salwa, Salwa; Aini, Qurratul; Wardhana, I Gede Adhitya Wisnu
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 3 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss3pp1393-1400

Abstract

There are many applications of graphs in various fields. Starting from chemical problems, such as the molecular shape of a compound to internet network problems, we can also use graphs to depict the abstract concept of a mathematical structure.. Groups in Algebra can be represented as a graph. This is interesting because Groups are abstract objects in mathematics. The graph of a group shows the physical form of the group by looking at the relationship between its elements. So, we can know the distance of the elements. In 2013, Abawajy et al. conducted studies related to power graphs. Power graph representation of groups of integers modulo with the order of prime numbers has been carried out in 2022 by Syechah, et al. In this article, the author provides the properties of a power graph on a group of integers modulo with the order of powers of prime numbers.
THE NON-COPRIME GRAPHS OF UPPER UNITRIANGULAR MATRIX GROUPS OVER THE RING OF INTEGER MODULO WITH PRIME ORDER AND THEIR TOPOLOGICAL INDICES Afdhaluzzikri, M.; Wardhana, I Gede Adhitya Wisnu; Maulana, Fariz; Biswas, Hena Rani
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 1 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss1pp547-556

Abstract

In its application graph theory is widely applied in various fields of science, including scheduling, transportation, industry, and structural chemistry, such as topological indexes. The study of graph theory is also widely applied as a form of representation of algebraic structures, including groups. One form of graph representation that has been studied is non-coprime graphs. The upper unitriangular matrix group is a form of group that can be represented in graph form. This group consists of upper unitriangular matrices, which are a special form of upper triangular matrix with entries in a ring R and all main diagonal entries have a value of one. In this research, we look for the form of a non-coprime graph from the upper unitriangular matrix group over a ring of prime modulo integers and several topological indexes, namely the Harmonic index, Wiener index, Harary index, and First Zagreb index. The findings of this research indicate that the structure of the graph and the general formula for the Harmonic index, Wiener index, Harary index, and First Zagreb index were successfully obtained.
Indeks Harmonik, Hyper-Wiener, Dan Randic Dari Graf Pangkat Pada Grup Dihedral Syafitri, Hanna; Wardhana, I Gede Adhitya Wisnu; Abdurahim, Abdurahim; Alfian, Muhammad Rijal; Syechah, Bulqis Nebulla
Basis : Jurnal Ilmiah Matematika Vol. 4 No. 2 (2025): BASIS: Jurnal Ilmiah Matematika
Publisher : Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/xcf56e20

Abstract

Grup  disebut Grup Dihedral dengan order 2n, dinotasikan D2n, untuk bilangan asli n yang lebih besar dari 3 merupakan grup yang dibangun oleh dua element berbeda yaitu a dan b. Graf Pangkat dari grup dihedral D2n adalah graf yang semua simpulnya merupakan semua element dari D2n. Lebih jah, dua simpul berbeda, a dan b, dikatakan bertetangga jika dan hanya jika  ax = b atau by= a  dengan x dan y bilangan bulat positif. Pada artikel ini akan dikaji beberapa indeks topologi dari graf pangkat untuk grup dihedral, yaitu indeks Randic, Harmonik, dan Hyper-Wiener. Hasil penelitian ini berupa rumus umum dari indeks topologi dari graf pangkat grup dihedral.
CERTAIN INDEXES OF UNIT GRAPH IN INTEGER MODULO RINGS WITH SPECIFIC ORDERS Lestari, Sahin Two; Albaracin, Jimboy R.; Wisnu Wardhana, I Gede Adhitya
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 4 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss4pp2455-2466

Abstract

Topological indices quantify structural properties of graphs and find wide applications in chemistry, physics, and network analysis. This study investigates several key indices—namely the Harary Index, Wiener Index, Randić Index, Schultz Index, and the Zagreb Indices—within the context of unit graphs derived from the ring of integers modulo. General formulas for these indices are established, demonstrating how they reflect the combinatorial and algebraic characteristics of unit graphs. Each index captures distinct structural aspects: the Wiener Index evaluates global connectivity and correlates with molecular stability and boiling points; the Randić Index highlights molecular branching relevant to enzyme activity; the Harary Index models electronic interactions through distance reciprocals; and the Zagreb Indices and Schultz Index provide insights into bonding properties and molecular interactions. By linking these indices to unit graphs, this work reinforces the synergy between graph theory and algebra, offering a systematic framework to interpret algebraic structures through graph-based invariants. The results not only contribute to theoretical understanding but also suggest potential applications in modeling chemical compounds and complex networks, paving the way for further exploration of topological indices in other algebraically defined graphs.
ENERGY OF NON-COPRIME GRAPH ON MODULO GROUP Karang, Gusti Yogananda; Wisnu Wardhana, I Gede Adhitya; Angamuthu, Manimaran
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 4 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss4pp2937-2952

Abstract

A graph is a mathematical structure consisting of a non-empty set of vertices and a set of edges connecting these vertices. In recent years, extensive research on graphs has been conducted, with one of the intriguing topics being the representation of graphs within algebraic structures, particularly groups. This approach bridges two areas of mathematics: graph theory and algebra. This study focuses on graph representation, specifically non-coprime graphs in the group of integers modulo ​, where , is a prime number, and is a non-negative integer. The non-coprime graph of a group is defined as a graph with the vertex set , where is the identity element of . Two distinct vertices and are connected by an edge if . Specifically, this research investigates the Sombor energy, the Degree Sum energy, the Degree Exponent Sum energy, the Laplacian energy, the Distance Laplacian energy, and the Distance Signless Laplacian energy of a non-coprime graph on a modulo group.
The First Zagreb Index and the Narumi-Katayama Index of the Non-Commuting Graph on the Group U_{6n} Hisan, Khairatun; Gambo, Ibrahim; Wardhana, I Gede Adhitya Wisnu
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 7 No. 2 (2025)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/sxha8875

Abstract

This paper introduces a novel approach to computing the First Zagreb and Narumi–Katayama indices for non-commuting graphs associated with specific algebraic groups, specifically focusing on the group U_{6n}. The Narumi–Katayama index, first introduced by Narumi and Katayama in 1984, is a degree-based topological index widely used in the study of various graph properties, including its applications in theoretical chemistry. Non-commuting graphs, where two elements are adjacent if and only if they do not commute, have become an intriguing object of study in recent years. To the best of our knowledge, this is the first study to derive closed-form expressions for the First Zagreb and Narumi–Katayama indices on the non-commuting graph of the group U_{6n}. Building on previous research on the detour index and eccentric connectivity in the graph Γ(U_{6n}), this work makes new contributions by deriving generalized formulas that apply to a broader class of non-commutative groups. Unlike previous studies that focused on commuting or coprime graphs, this research specifically addresses the structure and index computation of non-commuting graphs in a group-theoretic context. The findings offer new theoretical insights into algebraic graph theory by linking degree-based indices with the internal structure of non-abelian groups. These results are expected to expand the understanding of the topological properties of non-commuting graphs and to provide valuable connections to chemical applications.Keywords: Non-commuting graph; First Zagreb Index; Narumi–Katayama Index; graph topology; group structure. AbstrakArtikel ini memperkenalkan pendekatan baru untuk menghitung indeks First Zagreb dan Narumi–Katayama pada graf non-commuting yang terkait dengan grup aljabar tertentu, khususnya berfokus pada grup U_{6n}. Indeks Narumi–Katayama, yang pertama kali diperkenalkan oleh Narumi dan Katayama pada tahun 1984, adalah indeks topologis berbasis derajat yang banyak digunakan dalam studi berbagai properti graf, termasuk penerapannya dalam kimia teoretis. Graf non-commuting, di mana dua elemen saling berhubungan jika dan hanya jika mereka tidak komutatif, telah menjadi objek studi yang menarik dalam beberapa tahun terakhir. Sejauh yang kami ketahui, ini adalah studi pertama yang menghasilkan ekspresi bentuk tertutup untuk indeks First Zagreb dan Narumi–Katayama pada graf non-commuting dari grup U_{6n}. Berdasarkan penelitian sebelumnya tentang indeks detour dan konektivitas eksentrik pada graf Γ(U_{6n}), karya ini memberikan kontribusi baru dengan menghasilkan rumus umum yang dapat diterapkan pada kelas grup non-komutatif yang lebih luas. Berbeda dengan studi sebelumnya yang berfokus pada graf commuting atau coprime, penelitian ini secara khusus membahas struktur dan perhitungan indeks pada graf non-commuting dalam konteks teori grup. Hasil penelitian ini memberikan wawasan teoretis baru dalam teori graf aljabar dengan menghubungkan indeks berbasis derajat dengan struktur internal grup non-abelian. Diharapkan, temuan ini akan memperluas pemahaman tentang properti topologis graf non-commuting dan memberikan koneksi yang berharga untuk penerapan kimia.Kata Kunci: Graf non-commuting; Indeks Zagreb Pertama; Indeks Narumi–Katayama; Topologi graf; Struktur grup. 2020MSC: 05C25, 05C09, 20D60, 05C75.
Super (a,d)-P_2⨀P_m-Antimagic Total Labeling of Corona Product of Two Paths Yatin, Bela Zainun; Awanis, Zata Yumni; Wardhana, I Gede Adhitya Wisnu
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 8, No 2 (2024): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v8i2.20065

Abstract

Graph labeling involves mapping the elements of a graph (edges and vertices) to a set of positive integers. The concept of an anti-magic super outer labeling (a,d)-H pertains to assigning labels to the vertices and edges of a graph using natural numbers {1,2,3,...,p+q}. The weights of the outer labels H form an arithmetic sequence {a,a+d,a+2d,...,a+(k-1)d}, where 'a' represents the first term, 'd' is the common difference, and 'k' denotes the total number of outer labels, with the smallest label assigned to a vertex. This study investigates the super (a,d)-P_2⨀P_m-antimagic total labeling of the corona product P_n⨀P_m, where n and m are both greater than or equal to 3. We define the labeling functions for vertices and edges based on the partitioning of labels into three subsets. Using k-balanced and (k,δ)-anti balanced multisets, we demonstrate that for m being odd, P_n⨀P_m is super (9m^2 n+4mn+m-n+3,1)-P_2 ⨀▒P_(m ) -antimagic, and for m being even, P_n⨀P_m is super (9m^2 n+4mn+m-2n+5,3)-P_2 ⨀▒P_(m ) -antimagic. The labeling scheme is illustrated through examples. For the case when m is odd, an antimagic total labeling of P_3 ⨀▒P_3    forms a super (282,1)- P_2 ⨀▒P_(3 )  -antimagic labeling. In the case of even m, an antimagic total labeling of P_3 ⨀▒P_(4 ) results in a super (483,3)- P_2 ⨀▒P_(4 )  -antimagic labeling. Both of these examples provide insights into the antimagic properties of corona products.
Co-Authors A.A. Ketut Agung Cahyawan W Abdul Gazir Syarifudin Abdurahim, Abdurahim Adelia Adelia Aenan Salsabila Afdhaluzzikri, M. Albaracin, Jimboy R. Alimon, Nur Idayu Ambar, Jinan Angamuthu, Manimaran Anisa Agustina Arzaki Zaget Oasis Asmarani, Evi Yuniartika Awanis, Zatta Yumni Ayes Malona Siboro Ayes Malona Siboro Ayes Malona Siboro Baiq Desy Aniska Prayanti Baiq Rika Ayu Febrilia Beni Nungroho Sudiantoro Biswas, Hena Rani Borisman Bertinegara Dara Purnamasari Dara Puspita Anggraeni Devia Arisanti Dewi, Putu Kartika Dina Eka Putri Dwi Noorma Putri Evi Yunartika Asmarani Evi Yuniartika Asmarani Evi Yuniartika Asmarani Evi Yuniartika Asmarani Fathul Maulina Wahidah Febrilia, Baiq Rika Ayu Gambo, Ibrahim Ghazali Semil @ Ismail Ghoffari, Lalu Hasan Hijriati, Naimah Hisan, Khairatun Husni, Muhammad Naoval Ida Rohani Ilham Ilham Intan Muchtadi-Alamsyah Irwansyah Irwansyah Irwansyah Irwansyah Jurnal Pepadu Karang, Gusti Yogananda Laila Hayati Lailia Awalushaumi Lalu Hasan Ghoffari Lalu Riski Wirendra Putra Lalu Riski Wirendra Putra Lestari, Sahin Two Lia Fitta Pratiwi M Fauzul M. Afdhol Gilman Malik, Deny Putra Mamika Ujianita Romdhini MAMIKA UJIANITA ROMDHINI Mamika Ujianita Romdhini, Mamika Ujianita Marena Rahayu Gayatri Marena Rahayu Gayatri Masriani Masriani Masriani Masriani Maulana, Fariz MAXRIZAL Miftahurrahman, Miftahurrahman Muhammad Naoval Husni Muhammad Rijal Alfian Muklas Maulana Munawara Putia Ni Wayan Switrayni Ni Wayan Switrayni Ni Wayan Switrayni Nur Asmita Purnamasari Nurhabibah Nurhabibah Nurhabibah Nurhabibah Nurhabibah Nurhabibah Nurhabibah Nurhabibah Nuzla Af'idatur Robbaniyyah Pratama, Rendi Bahtiar Prof. Dr.I Nengah Suparta,M.Si . Pudji Astuti Purnamasari, Dara Putra, Lalu Riski Wirendra Putri Kurnia Chairunnisa Putu Kartika Dewi Qurratul Aini Qurratul Aini Qurratul Aini Ramdani, Dewi Santri Rendi Bahtiar Pratama Rifdah Fadhilah Rina Juliana Rina Juliana Sahin Two Lestari Sahin Two Lestari Salwa Salwa Salwa Salwa Salwa Salwa Salwa Salwa Salwa Salwa Salwa Salwa Sarmin, Nor Haniza Satriawan, Didit Semil @ Ismail, Ghazali Siboro, Ayes Malona Siti Raudhatul Kamali Surya Hadi Syafitri, Hanna Syaftirridho Putri Ubaidillah, Moch Rafi Zarkasy Widiastuti, Ratna Sari Yatin, Bela Zainun Zata Yumni Awanis Zata Yumni Awanis Zata Yumni Awaris