p-Index From 2021 - 2026
9.612
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Sinkron : Jurnal dan Penelitian Teknik Informatika JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Martabe : Jurnal Pengabdian Kepada Masyarakat The IJICS (International Journal of Informatics and Computer Science) Informatika Journal of Applied Engineering and Technological Science (JAETS) Jatilima : Jurnal Multimedia Dan Teknologi Informasi Indonesian Journal of Electrical Engineering and Computer Science INFOKUM Computer Science and Information Technologies Ihsan: Jurnal Pengabdian Masyarakat Journal of Computer Science, Information Technology and Telecommunication Engineering (JCoSITTE) International Journal Of Science, Technology & Management (IJSTM) Jurnal Ilmu Komputer dan Sistem Komputer Terapan (JIKSTRA) Jurnal Sains Teknologi dan Sistem Informasi Proceeding International Seminar of Islamic Studies Jurnal Minfo Polgan (JMP) Prosiding Snastikom sudo Jurnal Teknik Informatika Edu Society: Jurnal Pendidikan, Ilmu Sosial dan Pengabdian Kepada Masyarakat Internasional Journal of Data Science, Computer Science and Informatics Technology (InJODACSIT) Blend Sains Jurnal Teknik Wahana TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi International Journal of Economic, Technology and Social Sciences (Injects) Jurnal Pengabdian Barelang Jurnal Ilmu Komputer dan Sistem Informasi Hanif Journal of Information Systems Electronic Integrated Computer Algorithm Journal Jurnal Sains, Teknologi dan Komputer Economic: Journal Economic and Business Neptunus: Jurnal Ilmu Komputer dan Teknologi Informasi Jurnal Pengabdiaan Masyarakat Larisma Al'Adzkiya International of Computer Science and Information Technology Journal AQILA : Acceleration, Quantum, Information Technology and Algorithm Journal Tsabit
Claim Missing Document
Check
Articles

Application of Scrum Method in the Design of Water Bill Payment Report Information System at BUMdes Mbinalun Putri, Berlianda Oktariani Jelita; Al-Khowarizmi
Acceleration, Quantum, Information Technology and Algorithm Journal Vol. 1 No. 2 (2024): VOLUME 1, NO 2: DECEMBER 2024
Publisher : Yayasan Asmin Intelektual Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62123/aqila.v1i2.50

Abstract

An information system comprises components that process data, transforming it into meaningful information and assisting in the achievement of organizational objectives. The report information system on the design and development of this system is web-based, using the scrum methodology, which has flexible properties to develop a data processing application. However, the information system for processing water bill report data carried out at BUMDes Mbinalun still uses Microsoft Excel, so that the resulting data contains many errors in its management. Thus, the Scrum method makes work or data processing neater because the development process uses sprints, which are development activities to achieve small goals (which are broken down from the main goal) that usually take 2-4 weeks, which is called TimeBox. The final result of this work is a web-based water bill payment report system to make it easier to record water bill reports such as customer data, basic tariff data, and usage data. Apart from that, the design of the water bill payment report information system also provides information in the form of reports that can be printed directly, and customers can view bill data on the web.
Design And Construction Of Parking Lot Security System Using Internet Of Things And RFID Technology In Megaland Housing Complex Salma, Riza; Al-Khowarizmi
Acceleration, Quantum, Information Technology and Algorithm Journal Vol. 2 No. 1 (2025): VOLUME 2, NO 1: JUNE 2025
Publisher : Yayasan Asmin Intelektual Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62123/aqila.v2i1.76

Abstract

The parking lot security system is a very important aspect in maintaining the security and comfort of residents in a housing complex. This thesis aims to design and build a parking lot security system using Internet of Things (IoT) and Radio Frequency Identification (RFID) technology at the MegaLand housing complex. This system integrates IoT devices to monitor and control vehicle entry and exit access, and uses RFID technology to identify each vehicle that has a parking access permit. The use of this technology is expected to increase the efficiency and effectiveness of parking lot management, reduce the risk of theft, and make it easier for residents to access the parking area. The results of implementing this system show a significant improvement in the security and parking management aspects of the MegaLand Housing Complex.
Application of Region of Interest (ROI) in Student Attendance Detection System in Classroom Faizi, Setyo Fahmi Noor; Al-Khowarizmi
Electronic Integrated Computer Algorithm Journal Vol. 3 No. 1 (2025): VOLUME 3, NO 1: OCTOBER 2025
Publisher : Yayasan Asmin Intelektual Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62123/enigma.v3i1.107

Abstract

Efficient classroom management is a crucial requirement in academic environments such as the Faculty of Computer Science and Information Technology to increase productivity. This study aims to design and evaluate a real-time presence detection and counting system by implementing the Region of Interest (ROI) method to improve computational efficiency and accuracy. This methodology involves the use of a Logitech C270 HD webcam, with a static ROI set at 90% of the central video frame to focus the analysis. Person detection and counting are performed using a combination of Histogram of Oriented Gradients (HOG) for the body and Haar Cascade for the face. Time series reasoning with a minimum duration of 60 seconds and a grace period of 5 seconds is implemented to validate presence and stabilize the room status, with system performance evaluated using Precision and Recall metrics. The results show that the system successfully displays the status and number of people in the room very well, but the evaluation shows a Recall value of 1.00, which means the system detects every actual human presence. However, this system has significant accuracy issues, indicated by a low Precision of 0.04 and a high number of False Positives of 710. In conclusion, although the ROI application successfully improves the computational load and the temporal logic stabilizes the output, the HOG and Haar Cascade models are inadequate to handle visual noise in the ROI, resulting in low Precision and indicating the need for more sophisticated detection models.
Implementation of Machine Learning For Indonesian Sign Language Recognition Using Convolutional Neural Network Model Salamah, Umi; Al-Khowarizmi
Electronic Integrated Computer Algorithm Journal Vol. 3 No. 1 (2025): VOLUME 3, NO 1: OCTOBER 2025
Publisher : Yayasan Asmin Intelektual Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62123/enigma.v3i1.108

Abstract

Sign language is the primary means of communication for people with hearing impairments. However, the public's limited understanding of Indonesian Sign Language (BISINDO) remains a communication barrier. This study implemented machine learning with a Convolutional Neural Network (CNN) model to automatically recognize BISINDO gestures. The dataset consists of 2,600 manually captured hand images representing the letters A–Z. The training process was carried out through data pre-processing, image augmentation, and CNN parameter optimization. Test results showed that the system was able to recognize BISINDO letters with high accuracy and could combine letters into simple words such as "HAI", "SAYA", and "UMI" in real-time. This study demonstrates that CNN is effective in supporting a computer-based sign language translation system, thus becoming an inclusive communication solution for people with hearing impairments.
Implementation of a Drowsiness Detection System in Four-Wheel Vehicle Drivers Using OpenCv Ma’ajid, Farhan Riqi; Al-Khowarizmi
Electronic Integrated Computer Algorithm Journal Vol. 3 No. 1 (2025): VOLUME 3, NO 1: OCTOBER 2025
Publisher : Yayasan Asmin Intelektual Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62123/enigma.v3i1.109

Abstract

Drowsiness while driving is one of the triggers of traffic accidents. This study proposes a non-invasive and economical computer vision-based real-time drowsiness detection system. The system combines Eye Aspect Ratio (EAR) to assess eye openness, Convolutional Neural Network (CNN) for open/closed eye classification, and MediaPipe FaceMesh for stable facial landmark extraction. The dataset is taken from Kaggle (Open and Closed classes, totaling 1,452 images) and processed through grayscale conversion, normalization, 64×64 pixel resizing, and augmentation. Drowsiness detection is triggered when EAR <0.25 and CNN classifies both eyes as closed for ±2 consecutive seconds; visual/audio alarms are automatically activated. Test results on 218 images show excellent performance with only 1 misclassification (≈99.5% accuracy), with no false alarms for the open eye class. The system is implemented as a Flask-based web application for easy cross-device access. These findings demonstrate an efficient visual approach that is feasible to be integrated as a driving safety feature.
Deteksi Kematanagan Buah Sawit dengan Menggunakan Algoritma Convolutional Neural Network Siregar, Muhammad Rizky Pratama; Al-Khowarizmi, Al-Khowarizmi
TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi Vol 4 No 2(SEMNASTIK) (2024): TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akunt
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/tamika.Vol4No2(SEMNASTIK).pp175-183

Abstract

This research aims to develop an automatic palm fruit ripeness detection system using the Convolutional Neural Network (CNN) algorithm. The dataset used consists of thousands of images of ripe and unripe palm fruits with varying lighting conditions and shooting angles. The CNN model used is MobileNetV2 which has been adapted for binary classification tasks. The training process is performed using data augmentation techniques to improve the generalization of the model. The evaluation results show that the developed CNN model is able to classify the ripeness of palm fruits with an accuracy of 84%. Comparison with conventional methods that rely on visual assessment shows that the CNN model provides more consistent and objective results. The implementation of this model has the potential to increase the efficiency of the harvesting and processing of palm fruits and reduce production costs.
Optimization of Applied Detection Rate in the Simple Evolving Connectionist System Method for Classification of Images Containing Protein Syah, Rahmad; Al-Khowarizmi, Al-Khowarizmi
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 7 No. 1 (2021): April
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v7i1.20508

Abstract

Digital image processing in general to makes images that appear converted to a function of light intensity represented in a two-dimensional plane. The function is a value that will be processed for classification so that the computer is able to recognize the image. Besides classification requires training and testing to produce a small error value and optimal algorithm. The problem of optimization is closely related to the principles and findings of science. Getting the smallest error value by calculating using MAPE for that MAPE calculation is done by using the Detection Rate formula to generalize knowledge in order to find the optimal model. Thus, the application of ANN is very suitable for optimizing classification using the Simple Evolving Connectionist System Method and as the result, the classification of images containing protein with test data is that the eggs work with optimal proof of achieving MAPE without modification of 0.1947% and MAPE which has been modified with the formula detection rate of 0.05554633%.
Sistem Informasi Desa Berbasis Digitalisasi Menuju Smart Village di Desa Bandar Pulau Pekan Kabupaten Asahan Fariz, Miftah; Khowarizmi, Al; Harahap, Muhammad Said; Ginting, Nurman; Pradesyah, Riyan
EDU SOCIETY: JURNAL PENDIDIKAN, ILMU SOSIAL DAN PENGABDIAN KEPADA MASYARAKAT Vol. 4 No. 3 (2024): Oktober 2024-Januari 2025
Publisher : Association of Islamic Education Managers (Permapendis) Indonesia, North Sumatra Province

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56832/edu.v4i3.545

Abstract

Pengembangan sistem informasi desa berbasis digital, sangat dibutuhkan dalam pelaksanaan tata kelola pemerintahan desa, yang berorientasi pada pelayanan publik yang efektif dan efisien secara pengerjaan dan waktu. Agar segala bentuk perkembangan tersebut di atas, dapat terlaksana di pemerintahan desa, tergantung pada kesediaan sumber daya manusiayang memiliki skill dan kompetensi, dalam mengoperasikan sistem informasi berbasis digital. Sistem informasi desa berbasis digital, merupakan aplikasi berbasis web yang dapat mengelola data kependudukan serta tersedianya pelayananadministrasi kependudukan desa seperti, pembuatan surat keterangan lahir, surat keterangan domisili, surat keterangan usaha, dan surat keterang-keterangan lainnya. Di samping itu juga, sistem informasi desa berbasis digital, menyediakanpelayanan permohonan pembuatan kartu tanda penduduk, kartu keluarga, dan akta kelahiran. Sehingga membantu percepatan pelayanan desa. Desa Bandar Pulau Pekan Kabupaten Asahan, merupakan salah satu desa yang masih menggunakan atau menerapkan sistem informasi desa secara manual. Sehingga sering terjadi keterlambatan waktu, dalam pengurusan surat-surat kependudukan yang diperlukan masyarakat. Di samping itu juga, pengarsipan desa masih bersifat konvensional, sehingga perangkatan desa yang ada di Desa Bandar Pulau Pekan, mengalami kesulitan untuk mencari arsip yang dibutuhkan masyarakat, dengan waktu yang sudah lama waktunya. Maka dari itu, perlunya pendampingan untuk dapat mewujudkan sistem informasi desa berbasis digitalisasi, sebagai upaya dalam upaya mewujudkan smart village.
Pemanfaatan Internet of Things (IoT) pada Bidang Pertanian Menggunakan Arduino UnoR3 Sari, Indah Purnama; Novita, Aisar; Al-Khowarizmi, Al-Khowarizmi; Ramadhani, Fanny; Satria, Andy
Blend Sains Jurnal Teknik Vol. 2 No. 4 (2024): Edisi April
Publisher : Ilmu Bersama Center

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56211/blendsains.v2i4.505

Abstract

Kemajuan teknologi di era modern menuntut efisiensi dan kenyamanan penggunaan menjadi prioritas utama dalam menjalankan tugas sehari-hari. Hal ini mendorong banyak individu untuk menciptakan berbagai macam teknologi otomatis yang dapat menyederhanakan tugas dan menghemat waktu. Internet of Things (IoT) adalah teknologi yang menghubungkan kita dengan perangkat melalui internet, sehingga menjadikan segalanya lebih nyaman. Tujuan dari penelitian ini adalah untuk menyelidiki potensi penerapan IoT dalam industri pertanian Indonesia, salah satu sektor perekonomian negara. Perekonomian Indonesia sangat dipengaruhi oleh sektor pertanian yang menghasilkan berbagai macam barang seperti beras, jagung, kelapa sawit, lada, kopi, dan teh. Penulis menggunakan metode penulisan tinjauan pustaka/studi pustaka pada karya ilmiah yang ditulis. Luaran karya ilmiah ini merupakan gambaran penerapan teknologi IoT di bidang pertanian, yang nantinya dapat membantu masyarakat dalam meningkatkan produktivitas dan kualitas hasil pertaniannya. Selain itu, akan disertakan kutipan dalam setiap uraian setiap penggunaan teknologi IoT, yang dapat dijadikan referensi untuk mendapatkan pemahaman lebih dalam setiap penggunaan.
Perancangan dan Implementasi Drone Flysurveil Berbasis IoT untuk Sistem Pengawasan Otomatis Triantono, Gatot; Al-Khowarizmi, Al-Khowarizmi
Jurnal Sains, Teknologi & Komputer Vol. 2 No. 1 (2025): Jurnal Sains, Teknologi & Komputer (SAINTEK)
Publisher : Lembaga Riset Mutiara Akbar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56495/saintek.v2i1.1152

Abstract

The development of drone technology has had a significant impact on various sectors, including agriculture, security, and environmental monitoring. The Flysurveil drone was developed under the P2MW program as an innovative solution in IoT-based surveillance systems. This study aims to analyze the Flysurveil drone production process and identify technical challenges encountered in its development. The research methods used include literature review, observation, and technical analysis of the components and systems used in drone production. The results show that the Flysurveil drone production process includes several main stages, namely design, component selection, assembly, and testing. The main components used include Arduino and ESP32 microcontrollers, GPS modules, cameras, and brushless motors controlled by ESCs. However, several technical challenges were encountered, such as optimizing battery life, control system stability, and limitations in real-time data communication. This research is expected to provide insights for drone developers in improving production efficiency and the quality of drone-based surveillance systems. In addition, this research also contributes to the development of more adaptive and competitive drone technology in both domestic and global markets.
Co-Authors Abdulbasah Kamil, Anton Ade Haikal Adidtya Perdana, Adidtya Adila Mawaddah Meuraxa Ajulio Padly Sembiring Akbar Idaman Al Hamidy Albara Amrullah Amrullah Amrullah Andy Satria Angkat, Fhatiya Alzahra Aulia Jannah Bela, Bela Budi Kurniawan Hutasuhut Chindy Yovita Sukma Dalimunthe, Yulia Agustina Diana, Has Dicky Apdilah Edy Rahman Syahputra Efendi, Syahril Elveny, Marischa Fadhilah, Ulfa Faizi, Setyo Fahmi Noor Faradillah, Yanty Farid Akbar Siregar Fatma Sari Hutagalung FAUZI . Fauzi Fauzi Faza, Sharfina Ferry Fachrizal - Firahmi Rizky Frainskoy Rio Naibaho Gabriel Ardi Hutagalung Ginting, Nurman Habibi Ramdani Safitri Halim Maulana Hapzi Ali Harefa, Hafid Rahman Hariani, Pipit Putri Hasanuddin Hasanuddin Hasdiana Herman Mawengkang Hutagalung , Fatma Sari Hutagalung, Fatma Sari Ichsan, Aulia Idham Kamil Ilham Ramadhan Nasution Indah Purnama Sari Indah Purnama Sari Indah Purnama Sari Indah Purnama Sari Irvan, Irvan Ismail Hanif Batubara Julham Julham Julham Julham Lubis, Arif Ridho Lubis, Mhd Muchlisin M. Iqbal Tanjung M.Pd, Akrim Mahyuddin K. M Nasution Mandra Saragih Manurung, Asrar Aspia Marah Doly Nasution Ma’ajid, Farhan Riqi MD, Pipit Putri Hariani Mhd Faris Pratama Mhd. Basri Mhd. Basri Michael J Watts Miftah Fariz Prima Putra Muhammad Basri Muhammad Luthfi Hamzah Muhammad Said Harahap Muharman Lubis Muhathir, Muhathir Muhathir, Muhathir Mulkan Azhari Mulkan Azhari Mulkan Azhari Mutiara Akbar Nasution Nadeak, Nurhalimah Nasution, Tia Alfi Sahara Niken Aprilina Oris Krianto Sulaiman Permatasari, Dhyta Pipit Putri Hariani MD Pradesyah, Riyan Pradesyah, Riyan Prayudani, Santi Putri, Berlianda Oktariani Jelita Putri, Wan Hafizah Ainun Syah Qadri, Habib Al Rahmad B.Y Syah Rahmad Syah Rahmad Syah, Rahmad Rahmat Mushlihuddin Ramadhani, Fanny Romi Fadillah Rahmat Salma, Riza Sarah Purnamawati Sari Hutagalung, Fatma Septiana Dewi Andriana, Septiana Dewi Sibarani, Theofil Tri Saputra Simanungkalit, Ahmad Hazazi Siregar, Ananda Afifah Siregar, Muhammad Rizky Pratama Suherman Suherman Tessya Fakhta Tri Nasution Triantono, Gatot Umi Salamah Vicky Rolanda Wasesa, Istikha Ruchitra Hayudirga Watts, Michael J. Yoshida Sary Yuyun Yusnida Lase Zhafirah, Zhahrah