Articles
            
            
            
            
            
                            
                    
                        Classifying Physical Activity Levels in Early Childhood Using Actigraph and Machine Learning Method 
                    
                    Syifa Wandani; 
Adang Suherman; 
Jajat; 
Kuston Sultoni; 
Yati Ruhayati; 
Imas Damayanti; 
Nur Indri Rahayu                    
                     Indonesian Journal of Sport Management Vol. 3 No. 2 (2023): Indonesian Journal of Sport Management 
                    
                    Publisher : Universitas Majalengka 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.31949/ijsm.v3i2.7173                            
                                            
                    
                        
                            
                            
                                
Actigraph is a widely used accelerometer for classifying physical activity levels in children, adolescents, adults, and older people. The classification of physical activity levels on Actigraph is determined through time calculations using cut-point formulas. The study aims to classify physical activity in young children according to the guidelines of the World Health Organization (WHO) using accelerometer data and machine learning methods. The study involved 52 young children (26 girls and 26 boys) aged 4 to 5 years in West Java, with an average age of 4.58 years. Physical activity and sedentary behavior of these early childhood were simultaneously recorded using the Actigraph GT3X accelerometer for seven days. The data from the Actigraph were analyzed using two algorithm models: the decision tree and support vector machine, with the Rapidminer application. The results from the decision tree model show a classification accuracy of 96.00% in categorizing physical activities in young children. On the other hand, the support vector machine model achieved an accuracy of 84.67% in classifying physical activities in young children. The decision tree outperforms the support vector machine in accurately classifying physical activities in early childhood. This research highlights the potential benefits of machine learning in sports and physical activity sciences, indicating the need for further development.
                            
                         
                     
                 
                
                            
                    
                        Klasifikasi Aktivitas Fisik Berbasis Data Accelerometer ActivPAL dan ActiGraph: Metode Analisis dengan Machine Learning 
                    
                    Agum Sholahuddin; 
Jajat Jajat; 
Imas Damayanti; 
Kuston Sultoni; 
Adang Suherman; 
Nur Indri Rahayu; 
Yati Nurhayati; 
Mohammad Zaky                    
                     Jurnal Dunia Pendidikan Vol 4 No 2 (2024): Jurnal Dunia Pendidikan 
                    
                    Publisher : LPPM Sekolah Tinggi Olahraga dan Kesehatan Bina Guna 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.55081/jurdip.v4i2.1886                            
                                            
                    
                        
                            
                            
                                
Aktivitas fisik secara teratur dapat memberikan dampak positif terhadap kesehatan pada semua golongan usia. Saat ini sudah banyak penelitian terkait pengukuran aktivitas fisik yang diakukan dengan memanfaatkan kecerdasan buatan (Artificial Intelligence) salah satunya menggunakan machine learning dalam mengklasifikasi aktivitas fisik. Studi ini bertujuan menganalisis klasifikasi aktivitas fisik menggunakan machine learning dengan sumber data accelerometer ActivPAL dan ActiGraph GT3X. Partisipan dalam penelitian ini 105 siswa Sekolah Menengah Atas berusia antara 17-19 Tahun. Penelitian ini menggunakan algoritma Machine learning Decision tree. Hasil analisis data menunjukan akurasi sebesar 56,25% pada instumen ActivPAL dan 93,33% pada instrumen ActiGraph. Performa akurasi decision tree sangat baik dalam mengklasifikasi aktivitas fisik yang bersumber dari data accelerometer ActiGraph dibandingkan dengan accelerometer ActivPAL. Selain waktu aktivitas fisik dan sedentary, jenis kelamin merupakan predictor lain untuk mengklasifikasi aktif atau tidaknya seseorang.
                            
                         
                     
                 
                
                            
                    
                        Analisis Promosi Gaya Hidup Sehat dan Aktif pada Perguruan Tinggi Negeri di Jawa Barat 
                    
                    Muhammad Dzulfikar Firdaus; 
Adang Suherman; 
Jajat; 
Surdiniaty Ugelta; 
Yati Ruhayati; 
Kuston Sultoni; 
Imas Damayanti; 
Mohammad zaky; 
Nur Indri Rahayu                    
                     JURNAL PENDIDIKAN OLAHRAGA Vol 14 No 2 (2024): JURNAL PENDIDIKAN OLAHRAGA 
                    
                    Publisher : STKIP Taman Siswa Bima 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.37630/jpo.v14i2.1612                            
                                            
                    
                        
                            
                            
                                
Gaya hidup sehat memiliki pengaruh yang besar dalam kesehatan dan kebugaran yang menjadi faktor penting dalam menentukan kesehatan dan penyakit seseorang, bahkan gaya hidup sehat berdampak pada peningkatan kesejahteraan seseorang. Penelitian ini bertujuan untuk menganalisis dan mengevaluasi promosi gaya hidup sehat dan aktif pada mahasiswa perguruan tinggi negeri di Jawa Barat. Metode penelitian yang digunakan adalah cross sectional dengan menggunakan kuesioner Health Promoting Lifestyle Profile II. Partisipan terdiri dari 641 mahasiswa yang berusia antara 18 tahun sampai dengan 24 tahun (M =21,05 ± SD= 1,369) yang terdiri dari 326 laki-laki dan 315 perempuan dan partisipan dipilih melalui teknik purposive sampling. Analisis data pada penelitian ini menggunakan descriptive statistics untuk mengetahui jumlah partisipan berdasarkan karakteristik partisipan, sementara itu, independent samples t-test dilakukan untuk mengetahui perbedaan rata-rata skor gaya hidup sehat dan aktif berdasarkan jenis kelamin dan status tempat tinggal dan one way ANOVA untuk mengetahui perbedaan berdasarkan status tempat tinggal. Hasil penelitian menunjukkan adanya perbedaan signifikan antara mahasiswa berdasarkan jenis kelamin yang memiliki nilai (p < 0,05) dan jenis UKM yang diikuti dengan nilai (p < 0,05), sementara itu tidak terdapat perbedaan yang signifikan berdasarkan status tempat tinggal yang memiliki nilai (p > 0,05). Dengan demikian, promosi gaya hidup sehat dan aktif harus terus dilakukan untuk meningkatkan gaya hidup sehat dan aktif pada mahasiswa.
                            
                         
                     
                 
                
                            
                    
                        Health promoting lifestyle in educational setting: an intervention study in the universities 
                    
                    Nur Indri Rahayu; 
Muktiarni Muktiarni; 
Adang Suherman; 
Affero Ismail                    
                     Journal of Education and Learning (EduLearn) Vol 18, No 4: November 2024 
                    
                    Publisher : Intelektual Pustaka Media Utama 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.11591/edulearn.v18i4.21141                            
                                            
                    
                        
                            
                            
                                
The "health promoting universities" strategy has gained popularity and a presence in the higher education system, particularly in universities. It is imperative for higher education establishments to prioritize the promotion of health within their student body and academic community. By safeguarding and boosting students' wellbeing, a strategy centered on encouraging healthy lifestyles has the potential to boost the university's contribution to health improvement and offer significant value to the community. Universities have the power to improve health promotion through community service and to make policies in this area through research and teaching. In order to investigate student behavior in relation to the standard aspects of the healthpromoting lifestyle profile, this project will undertake an intervention study involving 150 students with the goal of promoting a healthy lifestyle. A pretest and post-test control group design was employed in this investigation. The health-promoting lifestyle standard profile II questionnaire was the research instrument, and descriptive statistics and inference were employed for analysis at the .05 significant level. The outcomes demonstrated a noteworthy impact on the implemented measures. This study's findings indicated that interventions in learning environments successfully raised student behavior linked to a healthy lifestyle and its components.
                            
                         
                     
                 
                
                            
                    
                        Aktivitas Fisik Generasi Zillenial di Kota Bandung Berdasarkan Gender 
                    
                    Sri Devi; 
Imas Damayanti; 
Nur Indri Rahayu; 
Yati Ruhayati; 
Adang Suherman; 
Jajat Jajat; 
Kuston Sultoni; 
Surdiniaty Ugelta                    
                     JSKK (Jurnal Sains Keolahragaan dan Kesehatan) Vol 8 No 2 (2023) 
                    
                    Publisher : Institut Teknologi Bandung 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.5614/jskk.2023.8.2.9                            
                                            
                    
                        
                            
                            
                                
The purpose of this study was to examine differences in the level of physical activity of zillenial generation based on gender. The method used is a quantitative research method with a comparative causal approach. The population of this study is generation Z who live in Kota Bandung. The sample in this study was 134 people with the sampling technique using Convenience Sampling. The physical activity instrument in data collection uses the Global Physical Activity Questionnaire (GPAQ). Data was analyzed using Mann Whitney U test. The description of the physical activity of the zillenial generation based on the GPAQ domain shows that in the domain of activity at work/study, travel to and from places and sedentary behavior there are no differences based on gender. Which shows that Generation Z does a lot of moderate physical activity. While in the domain of recreational activities there are differences based on gender. The results of the data analysis show the value of sig. p=0.453 > 0.05, data is significant. The results of this study concluded that there was no difference in the physical activity of zillenial generation based on gender.
                            
                         
                     
                 
                
                            
                    
                        PHYSICAL LITERACY PUBLICATION TRENDS IN INDONESIA USING BIBLIOMETRIC ANALYSIS 
                    
                    Hayudi, H; 
Suherman, Adang; 
Sutresna, Nina; 
Yudiana, Yunyun                    
                     ASEAN Journal of Sport for Development and Peace Vol 4, No 2 (2024): Sports and Physical Education for a Better Quality of Life and Success (July) 20 
                    
                    Publisher : Universitas Pendidikan Indonesia 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.17509/ajsdp.v4i2.74323                            
                                            
                    
                        
                            
                            
                                
This research aims to link mapping analysis with VOSviewer software in bibliometric engineering research on physical literacy in Indonesia. The results of this mapping can be used as a reference and help researchers to decide on future research themes, especially those related to physical literacy. The Publis or Perish application is used to search and collect databases based on Google Scholar. Titles, keywords, and abstracts are part of the bibliographic mapping data used in this research. The search results collected 989 articles published over 11 years (2013-2023). Based on the number of publications on physical literacy in Indonesia from 2013-2023 it is unstable. 2021 will be the peak publication of 240 articles. Research on the topic of physical literacy in Indonesia is still very lacking and is wide open for research, mainly including physical literacy in educational unit curricula, physical literacy is linked to knowledge, physical literacy is linked to elementary schools, physical literacy is related to national development policies.
                            
                         
                     
                 
                
                            
                    
                        The influence of thinking styles and gender on students' creative thinking abilities in physical education 
                    
                    Dupri; 
Suherman, Adang; 
Budiana, Dian; 
Juliantine, Tite                    
                     Edu Sportivo: Indonesian Journal of Physical Education Vol. 5 No. 2 (2024): Edu Sportivo: Indonesian Journal of Physical Education 
                    
                    Publisher : UIR Press Bekerjasama dengan International Association of Physical Education and Sports 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.25299/esijope.2024.vol5(2).16781                            
                                            
                    
                        
                            
                            
                                
Background: Modern developments require Generation Z to be able to face future challenges that cannot be predicted. Research Objectives: The purpose of this study is to investigate how thinking styles and gender can develop creative thinking skills in students when learning physical education and also to investigate the interaction between thinking style and gender on creative thinking skills. Methods: This study used a non-experimental design. Thinking style is measured by learning and thinking style tests (SOLAT), and creative thinking skills are measured by the Torrance Test of Creative Thinking (TTCT), which consists of four indicators: fluency, flexibility, originality, and elaboration. The sampling technique in this study was cluster random sampling. The random process is carried out in two stages: the first is random selection by randomly selecting, and the second is the second is random assignment. The sample for this research was 68, consisting of 33 men and 35 women. Meanwhile, the analysis was done by looking at n-gain and continuing with the ANOVA test. Findings/Results: The results of this study indicate that thinking styles and gender significantly impact students' creative thinking ability, and there is also an interaction between thinking styles and types that significantly affects students' creative thinking ability. The analysis of the data obtained found a significant relationship between gender and students' creative thinking skills in physical education. Conclusion: Male students have better creative thinking skills than female students because they tend to use the right brain to develop their thinking skills. In developing creative thinking skills, grouping based on gender is necessary. Future research needs to be conducted by considering the right learning model for developing creative thinking skills during physical education learning.
                            
                         
                     
                 
                
                            
                    
                        A Machine Learning Approach to Predicting Physical Activity Levels in Adolescents 
                    
                    Mahendra, Desvy Rahma Putri; 
Jajat, Jajat; 
Damayanti, Imas; 
Sultoni, Kuston; 
Ruhayati, Yati; 
Suherman, Adang; 
Rahayu, Nur Indri                    
                     Indonesian Journal of Sport Management Vol. 3 No. 2 (2023): Indonesian Journal of Sport Management 
                    
                    Publisher : Universitas Majalengka 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.31949/ijsm.v3i2.7145                            
                                            
                    
                        
                            
                            
                                
The ongoing evolution of technology has had both positive and negative effects on modern society. On the positive side, it has significantly improved the ease with which various activities can be performed. However, it has also had a negative impact by reducing physical activity. This reduction in physical activity, in turn, increases the risk of chronic diseases that contribute to global mortality rates. This research aims to assess the effectiveness of machine learning in predicting the physical activity levels of adolescents. The study utilizes data from accelerometers, specifically the ActiGraph GT3X. The research methodology employs a semi-supervised machine learning approach, using the support vector machine and decision tree algorithms to make these predictions. The sample comprises 61 adolescents (males = 17, female = 44), including high school students and university students aged 18-21, from the West Java region. The results from the machine learning model using the decision tree algorithm indicated a model accuracy of 97.50% in predicting physical activity levels. In contrast, the accuracy obtained from the performance analysis using the confusion matrix for the support vector machine model was 92.5%. Based on these accuracy levels, the decision tree algorithm outperforms the support vector machine algorithm's accuracy. Further analyses involving different models are necessary to determine which algorithm offers the highest level of accuracy.
                            
                         
                     
                 
                
                            
                    
                        Classifying Physical Activity Levels in Early Childhood Using Actigraph and Machine Learning Method 
                    
                    Wandani, Syifa; 
Suherman, Adang; 
Jajat; 
Sultoni, Kuston; 
Ruhayati, Yati; 
Damayanti, Imas; 
Rahayu, Nur Indri                    
                     Indonesian Journal of Sport Management Vol. 3 No. 2 (2023): Indonesian Journal of Sport Management 
                    
                    Publisher : Universitas Majalengka 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.31949/ijsm.v3i2.7173                            
                                            
                    
                        
                            
                            
                                
Actigraph is a widely used accelerometer for classifying physical activity levels in children, adolescents, adults, and older people. The classification of physical activity levels on Actigraph is determined through time calculations using cut-point formulas. The study aims to classify physical activity in young children according to the guidelines of the World Health Organization (WHO) using accelerometer data and machine learning methods. The study involved 52 young children (26 girls and 26 boys) aged 4 to 5 years in West Java, with an average age of 4.58 years. Physical activity and sedentary behavior of these early childhood were simultaneously recorded using the Actigraph GT3X accelerometer for seven days. The data from the Actigraph were analyzed using two algorithm models: the decision tree and support vector machine, with the Rapidminer application. The results from the decision tree model show a classification accuracy of 96.00% in categorizing physical activities in young children. On the other hand, the support vector machine model achieved an accuracy of 84.67% in classifying physical activities in young children. The decision tree outperforms the support vector machine in accurately classifying physical activities in early childhood. This research highlights the potential benefits of machine learning in sports and physical activity sciences, indicating the need for further development.
                            
                         
                     
                 
                
                            
                    
                        RELIABILITAS PITTSBURGH SLEEP QUALITY INDEX VERSI BAHASA INDONESIA PADA LANSIA AKTIF BEROLAHRAGA 
                    
                    Sadewa, Fanuelciho; 
Ruhayati, Yati; 
Jajat, Jajat; 
Sultoni, Kuston; 
Suherman, Adang; 
Damayanti, Imas; 
Rahayu, Nur Indri                    
                     Jurnal Kesehatan dan Olahraga Vol 8, No 1 (2024) 
                    
                    Publisher : Universitas Negeri Medan 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.24114/ko.v8i1.56927                            
                                            
                    
                        
                            
                            
                                
Seiring bertambahnya usia, volume dan kualitas tidur biasanya akan semakin berkurang. Kualitas tidur salah satunya dikaitkan dengan aktivitas fisik dan olahraga. Namun demikian untuk mengukur kualitas tidur pada kelompok spesifik populasi yang aktif berolahraga masih terbatas, khususnya di Indonesia. Tujuan penelitian ini yaitu menguji reliabilitas dan validitas Pittsburgh Sleep Quality Index (PSQI) versi Indonesia. Pengujian validitas dan reliabilitas dilakukan tiga tahap, yaitu validitas bahasa, validitas & reliabilitas keterbacaan serta validitas & reliabilitas konstruk. Penelitian ini melibatkan 200 orang partisipan lansia berusia 60 – 77 tahun yang aktif di klub olahraga. Pengolahan dan analisis data dengan menggunakan correct item total correlation dan Cronbach’s alpha. Hasil penelitian menunjukkan bahwa PSQI versi Bahasa Indonesia pada populasi lansia yang aktif di klub olahraga memiliki reliabilitas yang rendah nilai Cronbach’s Alpha 0,4. Metode analisis seperti confirmatory factor analysis diperlukan untuk penelitian lebih lanjut.