Claim Missing Document
Check
Articles

Spektrum Signless-Laplace dan Spektrum Detour Graf Konjugasi dari Grup Dihedral Abdussakir, Abdussakir; Khasanah, Rhoul
KUBIK Vol 3, No 1 (2018): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v3i1.2729

Abstract

Misalkan G graf berhingga yang tidak memuat loop dan sisi rangkap. Matriks keterhubungan titik A(G) dari graf G adalah matriks dengan entri aij = 1 jika vi terhubung langsung dengan vj dan aij = 0 untuk lainnya. Matriks derajat D(G) dari graf G adalah matriks diagonal dengan entri dii merupakan derajat titik vi di G.  Matriks signless-Laplace dari graf G adalah L+(G) = D(G) + A(G). Matriks detour DD(G) dari graf G adalah matriks dengan entri ddij merupakan panjang lintasan terpanjang dari vi ke vj. Spektrum dari suatu matriks merupakan matriks yang memuat nilai eigen pada baris pertama dan multiplisitas masing-masing nilai eigen pada baris kedua. Spektrum yang diperoleh dari matriks L+(G) disebut spektrum signless-Laplace sedangkan spektrum yang diperoleh dari matriks DD(G) disebut spektrum detour. Penelitian ini menyajikan rumus untuk menghitung spektrum signless-Laplace graf konjugasi dari grup dihedral D2n untuk n ganjil (n ³ 5) dan spektrum detour graf konjugasi dari grup dihedral D2n untuk  ganjil (n ³ 3) dan  genap (n ³ 6).
PEMBELAJARAN BERPARADIGMA AL-QUR’AN UNTUK MENGATASI KESULITAN SISWA MADRASAH DALAM MEMPELAJARI MATEMATIKA Abdussakir, Abdussakir
Madrasah: Jurnal Pendidikan dan Pembelajaran Dasar Vol 1, No 1 (2008): Madrasah: Jurnal Pendidikan dan Pembelajaran Dasar
Publisher : Fakultas Ilmu Tarbiyah dan Keguruan Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jt.v1i1.1856

Abstract

We have known, mathematic is considered the difficult lesson by several students. The student mathematic achievement is very lack of satisfactory and very less, moreover madrasah’s student. This article wants to offer the newest way to up grade the student’s mathematic achievement. The mathematic learning should be performed by a heart, not only by a brain. This is a scientist concept at Koran who can use “fikir” and “dzikir”, a heart and a brain, “bayani”, “burhani” and “irfani” method in mathematic learning. In other word, the mathematic learning should be involved the intellectual questions (IQ), spiritual questions (SQ), and emotional questions (EQ).Keyword: Paradigm, Matematic, al-Quran
Penggunaan Komputer Untuk Pembelajaran Matematika Abdussakir, Abdussakir
Madrasah: Jurnal Pendidikan dan Pembelajaran Dasar Vol 5, No 2 (2013): Madrasah: Jurnal Pendidikan dan Pembelajaran Dasar
Publisher : Fakultas Ilmu Tarbiyah dan Keguruan Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jt.v6i2.3299

Abstract

Today, many schools have computer. Nevertheless, school uses computer for extracurricular, practicum, and even just for “decoration”. The computer has not been used maximally in the learning of mathematics. Whereas, various research have shown that the result of computer using in the learning mathematic better than without computer.Keywords: Computer, Using, Learning, Mathematics.
PEMBELAJARAN GEOMETRI SESUAI TEORI VAN HIELE Abdussakir, Abdussakir
Madrasah: Jurnal Pendidikan dan Pembelajaran Dasar Vol 2, No 1 (2009): Madrasah: Jurnal Pendidikan dan Pembelajaran Dasar
Publisher : Fakultas Ilmu Tarbiyah dan Keguruan Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jt.v2i1.1832

Abstract

Geometry has a special place in the math curricula at schools. This is because the contents of geometry considered usefel in the daily life. Based on the fact, many students faced difficulties to understand the geometry theory. For this purpose, this article offered van Hielle teory as one of alternative to solve the students’ problem.
Spektrum Signless-Laplace dan Spektrum Detour Graf Konjugasi dari Grup Dihedral Abdussakir Abdussakir; Rhoul Khasanah
KUBIK Vol 3, No 1 (2018): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v3i1.2730

Abstract

Misalkan G graf berhingga yang tidak memuat loop dan sisi rangkap. Matriks keterhubungan titik A(G) dari graf G adalah matriks dengan entri aij = 1 jika vi terhubung langsung dengan vj dan aij = 0 untuk lainnya. Matriks derajat D(G) dari graf G adalah matriks diagonal dengan entri dii merupakan derajat titik vi di G.  Matriks signless-Laplace dari graf G adalah L+(G) = D(G) + A(G). Matriks detour DD(G) dari graf G adalah matriks dengan entri ddij merupakan panjang lintasan terpanjang dari vi ke vj. Spektrum dari suatu matriks merupakan matriks yang memuat nilai eigen pada baris pertama dan multiplisitas masing-masing nilai eigen pada baris kedua. Spektrum yang diperoleh dari matriks L+(G) disebut spektrum signless-Laplace sedangkan spektrum yang diperoleh dari matriks DD(G) disebut spektrum detour. Penelitian ini menyajikan rumus untuk menghitung spektrum signless-Laplace graf konjugasi dari grup dihedral D2n untuk n ganjil (n ³ 5) dan spektrum detour graf konjugasi dari grup dihedral D2n untuk  ganjil (n ³ 3) dan  genap (n ³ 6).
Nilai Ketakteraturan Total dari Lima Copy Graf Bintang Corry Corazon Marzuki; Era Napra Tilopa Sihombing; Abdussakir Abdussakir; Ade Novia Rahma
Jurnal Fourier Vol. 9 No. 2 (2020)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Misalkan G=(V,E) adalah suatu graf dan k adalah suatu bilangan bulat positif. Pelabelan-k total pada G adalah suatu pemetaaan f: V U E?{1,2,...,k}. Bobot titik t dinyatakan dengan wf(t)=f(t)+?ut element E(G)f(ut) dan bobot sisi ut dinyatakan dengan wf(t)=f(u)+f(ut)+f(t). Suatu pelabelan-k total pada G dikatakan tak teratur total, jika bobot setiap titik berbeda dan bobot setiap sisi berbeda. Nilai k terkecil sehingga suatu graf G memiliki pelabelan-k total tak teratur total disebut nilai ketakteraturan total dari G, dinotasikan dengan ts(G). Pada penelitian ini, ditentukan nilai ketakteraturan total dari lima copy graf bintang 5Sn, dengan n adalah bilangan bulat positif dan n?3. [Let G=(V,E) be a graph and k is a positive integer, total k-labelling on G is a mapping f: V U E?{1,2,...,k}. The weight of the vertex t is defined by wf(t)=f(t)+?ut element E(G)f(ut) and the weight of the edge ut is defined by wf(t)=f(u)+f(ut)+f(t). A total k-labeling of G is called a totally irregular total labeling, if the weight of every two distinct vertices are different and the weight of every two distinct edges are different. The minimum k such that a graph G has a totally irregular total k-labeling of G is called the total irregularity strength of G, denoted by ts(G). In this research determined total irregularity strength of five copies of star graph 5Sn, where n is a positive integer and n?3]
Analisis Level Metakognisi Siswa Sekolah Menengah Atas Penghafal al-Qur’an dalam Memecahkan Masalah Matematika Dewi Rosikhoh; Liny Mardhiyatirrahmah; Abdussakir Abdussakir
ARITHMETIC: Academic Journal of Math Vol 1, No 2 (2019)
Publisher : Institut Agama Islam Negeri Curup

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29240/ja.v1i2.1068

Abstract

Metacognition has a key position on problem solving in mathematics. Metacognition is thinking about what they think. This research is qualitative research purposing for identifying of students’ metacognition level on matematics problem solving based on their quatity juzs of Qur’an memorized. The subjects of this research is three students who are in 12th grade in Senior High School. Students’ metacognition level is identified through test and indicator of metacognition level. The result of research show that metacognition level of Senior High School students taking in level of aware use, semi strategic use and semi reflective use. The student who has less than 10 juzs in Qur’an memorized is in aware use level. The student who has 10 until less than 20 juzs in Qur’an memorized is in semi strategic use level. The student who has 20 until 30 juzs in Qur’an memorizing is in semi reflective use level. Based on this reasearch, researchers conclude that the more juzs memorized, the higher level that students get.
Pembelajaran Pola Bilangan melalui Permainan Tradisional Nasi Goreng Kecap Dewi Rosikhoh; Abdussakir Abdussakir
Jurnal Tadris Matematika Vol 3 No 1 (2020)
Publisher : Institut Agama Islam Negeri (IAIN) Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21274/jtm.2020.3.1.43-54

Abstract

The development of games in the technological acceleration era nowadays endangers the extinction of traditional games. Therefore, the integration of Learning with Cultural Local Wisdom was needed to keep those cultures. The purpose of this research was to create an integrated learning design using number patterns material through the traditional game of Nasi Goreng Kecap. This research is a qualitative research with a design research approach and development studies type. The results showed that Nasi Goreng Kecap's traditional game had five steps in the process of the game. The second stage of this game contains the concept of number patterns. That's why, through this Nasi Goreng Kecap traditional game, it was able to be designed a process of learning that integrates mathematics with local wisdom culture. In those designed for integrative learning, students were arranged to be several groups with a maximum of each group was six students. Each group was played those games until the second stage only. Group worksheets had been provided by the teacher to direct the students in making patterns generalization from the second step of the Nasi Goreng Kecap traditional game.
Restructuring Of Students’ Thinking in Junior High School Through Defragmentation for Solving Mathematical Problems Liny Mardhiyatirrahmah; Abdussakir Abdussakir
Tarbiyah : Jurnal Ilmiah Kependidikan Vol 10, No 2 (2021): December
Publisher : Universitas Islam Negeri Antasari Banjarmasin, South Kalimantan, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18592/tarbiyah.v10i2.4810

Abstract

Problem-solving in math is still a problem today. Studies show that students still make mistakes in answering math problems. Errors in answering the questions indicate that there is fragmentation in the thinking structure of students. This article uses a systematic review method. Researchers selected articles according to the criteria and found 9 articles with a total of 25 research subjects. Data collection was carried out in two main stages, namely the search and selection stages. The results show that students experience many obstacles at the stage of re-checking the integrity of the completion steps because of the habit of students who skip the re-examination and are sure that the answer is correct. A common type of error in the construction of a mathematical concept is a construction hole. Construction holes can be overcome by the emergence of schemes to complement the imperfections of students' thinking structures in solving mathematical problems. The type of defragmentation that is most often given is scaffolding. Scaffolding is considered the most effective for all types of mistakes made because it can be done and later reduced so that students can solve math problems independently.
Penggunaan Missouri Mathematics Project (MMP) dalam Meningkatkan Keaktifan dan Hasil Belajar Siswa MAN 1 Jombang Erviningsih Setyorini; Nur Laili Achadiyah; Abdussakir Abdussakir
ARITHMETIC: Academic Journal of Math Vol 4, No 2 (2022)
Publisher : Institut Agama Islam Negeri Curup

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29240/ja.v4i2.5665

Abstract

This study aims to increase student activity and learning outcomes by using the Missouri Mathematics Project (MMP) learning model on trigonometry equations. This research is a Classroom Action Research conducted in 3 cycles at MAN 1 Jombang. The subjects of this study were 36 students of class XI MIPA 6. The research instruments included observation sheets and achievement tests. Analysis of student activity is carried out using the percentage formula while learning outcomes are carried out by calculating the average test score. The results showed that the percentage of student activity increased in each cycle, namely 61.81%, 73.61%, and 84.72%. The average student learning outcomes have increased in each cycle, namely 67.08, 73.19, and 85.28. The percentage of students who passed experienced an increase in each cycle, namely 50.00%, 66.67%, and 83.33%. It can be concluded that the use of the Missouri Mathematics Project learning model can increase student activity and learning outcomes in trigonometric equations.