Claim Missing Document
Check
Articles

PENGGUNAAN BAHAN MANIPULATIF UNTUK MENINGKATKAN PEMAHAMAN SISWA Rifaatul Mahmudah; Abdur Rahman Asari; Sisworo Sisworo
Jurnal Kajian Pembelajaran Matematika Vol 2, No 1 (2018): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (503.559 KB)

Abstract

Setiap siswa harus belajar matematika dengan pemahaman (Ghazali, 2011). Salah satu cara meningkatkan pemahaman siswa dalam belajar matematika adalah dengan menerapkan pembelajaran menggunakan bahan manipulatif. Penelitian ini bertujuan untuk mendeskripsikan penggunaan bahan manipulatif untuk meningkatkan pemahaman siswa pada materi Persamaan Linear Satu Variabel (PLSV). Penelitian ini merupakan penelitian kualitatif jenis penelitian tindakan. Analisis data yang digunakan adalah analisis data kuantitatif dan analisis data kualitatif. Subjek penelitian ini adalah 16 siswa kelas VII E di SMP IT Asy-syadzili Pakis. Hasil penelitian menunjukan bahwa penggunaan bahan manipulatif dalam pembelajaran matematika dapat meningkatka pemahaman siswa. Pada siklus I hasil tes akhir siswa menunjukkan 64,29 siswa memperoleh nilai lebih dari 70 meningkat pada siklus II 73,80% siswa memperoleh nilai lebih dari atau sama dengan 70.
Penerapan Model Pembelajaran Matematika Melalui Pemecahan Masalah untuk Meningkatkan Penalaran Matematis Siswa Kelas X-A SMA Al-Muslimun Maimunah Maimunah; Purwanto Purwanto; Cholis Sa’dijah; Sisworo Sisworo
JRPM (Jurnal Review Pembelajaran Matematika) Vol. 1 No. 1 (2016)
Publisher : Department of Mathematics Education, Faculty of Tarbiyah and Teacher Training, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.613 KB) | DOI: 10.15642/jrpm.2016.1.1.17-30

Abstract

The purpose of this study to improve students mathematical reasoning with the application of teaching mathematics through problem solving. This models consist of four fase, that is: giving problems, investigation, presentation results, and evaluation results. Method of research is quasi experimental is implemented in class X-A SMA Al Muslimun Pelalawan Riau. Subject of this study were 19 students who divided into groups of 4-5 students with the capability of high, medium, and low. The instrument used was a test and observation. In the pretest result there were 10 students with sufficient reasoning and good criteria. While on the posttest there were 19 students with the criterion of mathematical reasoning is good. No students obtains criterion of mathematical reasoning is very good in two test.
ANALYTICAL THINKING PROCESS OF STUDENTS IN SOLVING MATHEMATICAL PROBLEMS OF QUADRATIC FUNCTIONS Naela Nur Azizah; Susiswo Susiswo; Sisworo Sisworo
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 10, No 1 (2021)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (698.93 KB) | DOI: 10.24127/ajpm.v10i1.3440

Abstract

Analytical thinking is an ability to observe objects thoroughly and solve facts comprehensively. This study is set to describe students' analytical thinking processes in solving mathematical problems, especially in quadratic functions. It employs a qualitative approach with qualitative descriptive research. The subjects in this study are one student with high mathematics ability, one student with medium mathematics ability, and one student with low mathematics ability of Tenth Grade of State Islamic Senior High School 3 Tulungagung. Data collection are carried out through task-based interviews. Meanwhile, data analysis technique are data reduction, data presentation, and conclusion Based on the results of data analysis and discussion, it is concluded that (1) The student with high mathematical ability pass several stages, namely differentiating, and organizing, he/he can solve the quadratic function problem properly according to the problem solving steps. (2) The student with medium mathematical ability can go through differentiating and organizing stages. But at the attributing stage, he/she are less able to solve problems based on the objectives.  (3) The student with low mathematical ability tends not to pass differentiating, organizing, and attributing analytical thinking stages. He/she are less able to solve quadratic function problems according to the solving steps.Keywords: Analytical thinking process; problem solving; quadratic functions
Proses Metakognisi Siswa dalam Pemecahan Masalah Aljabar Berdasarkan Taksonomi SOLO Wasti Tampi; , Subanji; , Sisworo
Jurnal Matematika Vol 7 No 1 (2017)
Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JMAT.2017.v07.i01.p80

Abstract

This study describes the metacognition process of students in problem solving based on the SOLO taxonomy. This study used a qualitative approach with descriptive research. The results of this study suggest that the metacognition process of students that occurs in problems solving of algebra at the levels of unistructural, multistrucural, relational and extended abstract includes the process: metacognitive awareness, metacognitive evaluating and regulating metacognitive. Keywords: problem solving, metacognition, SOLO taxonomy.
GENERALIZATION STRATEGY OF LINEAR PATTERNS FROM FIELD-DEPENDENT COGNITIVE STYLE Yayan Eryk Setiawan; Purwanto Purwanto; I Nengah Parta; Sisworo Sisworo
Journal on Mathematics Education Vol 11, No 1 (2020)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (862.209 KB) | DOI: 10.22342/jme.11.1.9134.77-94

Abstract

Linear pattern is the primary material in learning number patterns in junior high schools, but there are still many students who fail to generalize the linear pattern. The students’ failure in generalizing the pattern occurred when the students ended to view the problems globally without breaking them into the constructors’ components such as the experience of field-dependent type students. For this reason, this study was carried out to explore the thinking process of students who fail and investigate the thinking processes of students who succeed in generalizing linear patterns. The results of this study provide an effective learning strategy solution for field-dependent students in generalizing linear patterns. This study employed a qualitative approach with a case study design to junior high school students. The results indicated that students in the field-dependent cognitive style looked at pattern questions represented in the form of geometric images globally without looking at the structure of the image. Two strategies for generalizing linear patterns used by field-dependent students were examined, namely recursive and different strategies.
Mathematics Knowledge in Numbering Activities in the Takpala Indigenous Village Community Andrian Runtius Lalang; I Nengah Parta; Sisworo Sisworo
Jurnal Pendidikan Sains Vol 9, No 2: June 2021
Publisher : Pascasarjana Universitas Negeri Malang (UM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jps.v9i2.15087

Abstract

Abstract: The counting activity carried out by the Takpala Indigenous Village community is their way of representing the quantity of a set of goods, counting days, and other activities related to counting in daily activities. Activities are carried out through the use of the Abui language and sticks. The purpose of this study was to describe the mathematical knowledge contained in counting activities by the Takpala Indigenous Village community. This research is ethnographic research with the idea that in each region there is different knowledge based on the needs of the community. Based on the result of the study, it was found that in the use of Abui language there was mathematical knowledge in the form of base 5 and base 10 sub base 5; and in the use of sticks, there are base 10, multiplication 10, and number operation with the concept of place values.Abstrak: Kegiatan membilang yang dilakukan masyarakat Kampung Adat Takpala merupakan cara mereka merepresentasikan jumlah kuantitas sekumpulan barang, menghitung hari dan kegiatan lainnya yang berhubungan dengan menghitung pada aktivitas keseharian. Kegiatan dilakukan lewat penggunaan bahasa Abui dan lidi. Tujuan dari penelitian ini adalah untuk mendeskripsikan pengetahuan matematika yang terdapat dalam kegiatan membilang oleh masyarakat Kampung Adat Takpala. Penelitian ini merupakan penelitian etnografi dengan pemikiran bahwa disetiap daerah terdapat pengetahuan yang berbeda berdasarkan kebutuhan masyarakat. Berdasarkan hasil penelitian diperoleh bahwa pada penggunaan bahasa Abui terdapat pengetahuan matematika berupa bilangan basis 5 dan basis 10 sub basis 5; dan pada penggunaan lidi terdapat bilangan basis 10, perkalian 10 dan operasi bilangan dengan memperhatikan nilai tempat.
BEBAN KOGNITIF SISWA DALAM PEMBELAJARAN MATERI GEOMETRI Barep Yohanes; Subanji Subanji; Sisworo Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol.1, No.2, Februari 2016
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.06 KB) | DOI: 10.17977/jp.v1i2.6121

Abstract

The purpose of the study describes the rises of cognitive load of students in learning geometry. The study used a qualitative approach. The results showed that the intrinsic cognitive load is derived from the number of elements of interactivity of position, distance, and angles between points, lines, and areas, congruency of triangles, algebraic and fractional operations. Intrinsic cognitive load comes from the complexity of the learning material that constitutes visualizing, performing algebraic operations,  determining congruency triangle, and the angle of difficulties. Extraneous cognitive load that arise due to the way the teacher in explaining too fast and disturbance of some of friends who are crowded / noisy. Germane cognitive load that arises due to the use of Cabri 3D in learning and giving variable exampleTujuan penelitian mendeskripsikan munculnya beban kognitif siswa dalam pembelajaran materi geometri. Penelitian menggunakan pendekatan kualitatif. Hasil penelitian menunjukkan bahwa beban kognitif intrinsic disebabkan oleh jumlah elemen interaktivitas yaitu kedudukan, jarak, dan sudut antara titik, garis, dan bidang, kesebangunan segitiga, operasi aljabar, dan operasi pecahan. Beban kognitif intrinsic disebabkan oleh kompleksitas materi, yaitu kesulitan membayangkan, kesulitan melakukan operasi aljabar, kesulitan menentukan kesebangunan segitiga, dan kesulitan menentukan besar sudut. Beban kognitif extraneous disebabkan oleh cara guru dalam menjelaskan terlalu cepat dan gangguan dari sebagian teman yang ramai/gaduh. Beban kognitif germane disebabkan oleh penggunaan Cabri 3D dalam pembelajaran dan pemberian latihan soal. 
PENGEMBANGAN PERANGKAT PEMBELAJARAN BERBASIS PROBLEM SOLVING POLYA UNTUK MENINGKATKAN KEMAMPUAN PENALARAN MATEMATIS SISWA MATERI PELUANG KELAS XI SMA Lela Nur Safrida; Abdur Rahman As’ari; Sisworo Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol.1, No.4, April 2016
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.764 KB) | DOI: 10.17977/jp.v1i4.6201

Abstract

Reasoning begins to be prominent in mathematics curricula around the world and is regarded as main effort to reform the mathematics learning. Reasoning and mathematics is an integral that inseparable because mathematics materials are understood through reasoning. Improving the students’ mathematical reasoning ability can be done by providing non routine tasks. The learning method that can accommodate students’ thinking process and reasoning is Polya’s problem solving. The purpose of this research and development is to describe the process and results of the learning device development based on Polya’s problem solving for students of class XI SMP on permutations and combinations materials are valid, practical, and effective that support increasing students' mathematical reasoning ability.Penalaran mulai ditonjolkan dalam kurikulum matematika di seluruh dunia dan dipandang sebagai upaya utama untuk mereformasi pembelajaran matematika. Penalaran dan matematika merupakan satu kesatuan yang tidak dapat dipisahkan karena materi matematika dipahami melalui penalaran. Upaya peningkatan kemampuan penalaran matematis siswa dapat dilakukan dengan memberikan tugas yang tidak rutin. Metode pembelajaran yang mampu mengakomodasi proses berfikir dan bernalar siswa yaitu problem solving Polya. Tujuan penelitian dan pengembangan ini adalah mendeskripsikan proses dan hasil pengembangan perangkat berbasis problem solving Polya untuk siswa kelas XI pada materi permutasi dan kombinasi yang valid, praktis, dan efektif dalam meningkatkan kemampuan penalaran matematis siswa.
Gesture Mahasiswa dalam Menyelesaikan Masalah Kombinatorika dengan Jawaban Benar Berdasarkan Tahap Berpikir Mason Mei Radia Putri; Abdur Rahman As’ari; Sisworo Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 5, No 8: AGUSTUS 2020
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v5i8.13962

Abstract

Abstract: This study described undergraduate students’ gesture in problem solving based on the stage of thinking by Mason which consisted of the stage of entry, attack, and review. The study adopted descriptive qualitative approach. Subjects were chosen based on their response in problem solving. Data collection was carried out by administering test, conducting interview, and recording video to explore students’ gesture in problem solving. Results showed that the students that could answer the combinatorical problems given correctly, did pointing and writing gesture in the phases of entry and attack and acted pointing, representational, and writing gesture in review phase.Abstrak: Penelitian ini bertujuan untuk mendeskripsikan gesture mahasiswa dalam menyelesiakan masalah dengan jawaban benar berdasarkan tahap berpikir Mason. Sehingga peneliti dapat mengetahui jenis gesture yang dilakukan mahasiswa pada setiap tahap entry, attack, maupun review. Penelitian ini menggunakan pendekatan kualitatif deskriptif. Subjek penelitian ini diambil berdasarkan jawaban mahasiswa dalam menyelesaikan masalah dengan tepat. Pengumpulan data dilakukan dengan pemberian lembar tes, wawancara, dan video recorder untuk mengetahui gesture mahasiswa tersebut saat menyelesaikan masalah. Hasil menunjukkan mahasiswa yang dapat menjawab masalah kombinatorika dengan benar, pada fase entry dan attack melakukan gesture pointing dan writing. Pada fase review melakukan gesture pointing, representational, dan writing.
Proses Penalaran Analogi Siswa Impulsif Dalam Memecahkan Masalah Bangun Ruang Sisi Lengkung Diyah Ayu Rizki Pradita; Dwiyana Dwiyana; Sisworo Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 12: DESEMBER 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i12.13057

Abstract

Abstract: The aim of the study was to describe the process of reasoning analogy of students impulsive in solving problems in constructing build arches. This type of research is a qualitative descriptive study using Sternberg's stage. The subjects in this study were three students of class X. The instruments used were MFFT, TKM, TPABRSL, and interview guidelines. The results of indicate that impulsive students are highly capable and are able to pass the encoding and inferring stages. However, students who are capable are not doing the mapping and applying stages correctly. Whereas low-ability impulsive students cannot pass all stages. Abstrak: Tujuan penelitian adalah menggambarkan proses penalaran analogi siswa impulsif dalam memecahkan masalah bangun ruang sisi lengkung. Jenis penelitian ini merupakan penelitian deskriptif kualitatif dengan menggunakan tahapan penalaran analogi menurut Sternberg. Subjek dalam penelitian ini adalah tiga siswa kelas X. Instrumen yang digunakan adalah tes MFFT, tes kemampuan matematika, tes penalaran analogi bangun ruang sisi lengkung (TPABRSL) dan pedoman wawancara. Hasil dari TPABRSL menunjukkan bahwa siswa impulsif berkemampuan tinggi dan sedang mampu melewati tahap encoding dan inferring. Akan tetapi, siswa berkemampuan sedang tidak melakukan tahap mapping dan tahap applying dengan benar, sedangkan siswa impulsif berkemampuan rendah tidak mampu melewati seluruh tahapan.
Co-Authors 'Azizah, Dewi Nur Abdur Rahman As’ari Agus Yulianto Amalia Martha Santosa Amanda Putri Enlisia Anas Ma’ruf Annizar Andrian Runtius Lalang Andrian Runtius Lalang Aulia Nadia Sari Barep Yohanes Bayu Nugroho Cholis Sa’dijah Dahliatul Hasanah Daiana, Putri Darmawan Satyananda Diyah Ayu Rizki Pradita Dwiyana Dwiyana Eddy Bambang Irawan Edy Bambang Irawan Erisca Lusy Rusdianti Erry Hidayanto Faradina, Erta Florianus Aloysius Nay Gatot Muhsetyo HAFIIZH, MOCHAMMAD Hasan Basri Hidayati, Vivi Rachmatul I Nengah Parta Ikhsana, Aulia Ilmiyatur Rosidah, Nilta Indah Puspitasari Maharani Indayani, Nunik Ipung Yuwono, Ipung Izzah, Nuurul Kamirsyah Wahyu Laily Wijayanti Utami Lathiful Anwar Lela Nur Safrida Mahmuddin Yunus Maimunah Maimunah Maimunah, Maimunah Mariana, Erna Mei Radia Putri Mirza Amelia Oktaviani Mohammad Akbar Muazarah, Salma Farihah Muhammad Irfan Nadia Nurudini Naela Nur Azizah Niila Amaalia Chasanah Nila Puspita Dewi Nilta Ilmiyatur Rosidah Nugraheni, Dinda Dwi Nugroho, Herlambang Tri Nunik Indayani Parta, I Negah Patma Sopamena Permadi, Hendro Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Putra, Zuhadur Ra'is Ariyono Qohar, Abd. Raey Hanah Rani Martalisa Taorina Refni Adesia Pradiarti Rifaatul Mahmudah Rustanto Rahardi Safitri, Rizqi Febriana Sartati, Setiawan Budi SATRIYAS ILYAS Setiawan Budi Sartati Shofi Farihah Muazarah Subanji Subanji Suci Zuhriati Sudirman Sudirman Sudirman Sudirman Susiswo Swalaganata, Galandaru Swasono Rahardjo Tasni, Nurfaida Tiwi Nur Masita Tjang Daniel Chandra Toto Nusantara Ulfa Rahmawati Untu, Zainuddin Untu Wasti Tampi Wasti Tampi Yandi Raharjo, Eko Yayan Eryk Setiawan Yudha, Sri Indah Dwirahmasari Zuhadur Ra'is Ariyono Putra