p-Index From 2021 - 2026
5.221
P-Index
Claim Missing Document
Check
Articles

Proses Berpikir Kreatif Siswa Berkemampuan Spasial Tinggi dalam Menyelesaikan Soal Open-ended Berdasarkan Tahapan Wallas Mirza Amelia Oktaviani; Sisworo Sisworo; Erry Hidayanto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 7: JULI 2018
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (651.813 KB) | DOI: 10.17977/jptpp.v3i7.11363

Abstract

Abstract: This study aims to describe the process of creative thinking of high-spatial ability students in solving open ended problems based on the stages of Wallas. The results of this study include (1) preparation stage, subject reading questions and looking for information of problems, (2) incubation stage, subject had time to pause and then draw cubes, (3) illumination stage, subject designs the solution for both ofproblems using Pythagorean theorem and circumference of region of cube, and (4) verification stage, student apply the idea and found that subject produce one solution for first problem and produce two solution for second solution. Abstrak: Penelitian ini bertujuan untuk mendeskripsikan proses berpikir kreatif siswa berkemampuan spasial tinggi kelas XI dalam menyelesaikan soal open-ended berdasarakan tahapan Wallas. Soal open-ended dalam penelitian ini menggunakan materi dimensi tiga. Hasil penelitian ini, meliputi (1) tahap persiapan, subjek membaca soal dan mengidentifikasi informasi soal, (2) tahap inkubasi, subjek sempat berhenti sejenak kemudian menggambar kerangka kubus yang sesuai, (3) tahap iluminasi, siswa merancang penyelesaian untuk soal pertama dan kedua dengan menggunakan teorema Pythagoras dan keliling bidang, dan (4) tahap verifikasi, siswa menerapkan ide penyelesaian dan menemukan satu solusi untuk soal open-ended pertama dan dua solusi untuk soal open-ended kedua dengan tepat.
Koneksi Matematis Siswa dalam Menyelesaikan Masalah Tidak Lengkap dalam Diskusi Kelompok Nadia Nurudini; Susiswo Susiswo; Sisworo Sisworo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 10: Oktober 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i10.12838

Abstract

Abstract: The purpose of this study is to describe students' mathematical connection ability on cube material in solving incomplete problems in group discussion. The sample in this study were 3 groups that has high, medium, and low mathematical abilities. The results of this study was found that the students with high ability were able to understand all mathematical connection indicators, which were finding the connection between mathematical topics, finding the connection of mathematics to other knowledges, and finding the connection of mathematics to dayly life. The students with medium ability were able to understand the first and second indicators. The students with low ability were only able to understand one indicator which was finding the connection between mathematical topics.Abstrak: Tujuan dari penelitian ini adalah untuk mendeskripsikan kemampuan koneksi matematis siswa pada materi bangun ruang kubus dalam menyelesaikan masalah tidak lengkap dalam diskusi kelompok. Sampel dalam penelitian ini diambil tiga kelompok siswa yang memiliki kemampuan matematis tinggi, sedang, dan rendah. Dari hasil penelitian diperoleh bahwa siswa berkemampuan tinggi dapat menguasai ketiga indikator kemampuan koneksi matematis, yaitu koneksi matematis antar topik matematika, koneksi matematis dengan mata pelajaran lain, dan koneksi matematis dengan kehidupan sehari-hari. Siswa berkemampuan sedang dapat menguasai indikator I dan II. Siswa berkemampuan rendah hanya menguasai satu indicator, yaitu koneksi antar topik matematika.
Pemahaman Siswa Tentang Equal Sign dalam Menyelesaikan Tugas Matematika Setiawan Budi Sartati; Subanji Subanji; Sisworo Sisworo
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol. 2 No. 1: December 2018
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/e-saintika.v2i1.80

Abstract

[Title: The Students' Understanding of Equal Sign in Completing Mathematics Tasks]. This study aims to describe the student's understanding of the equal sign to solve mathematical tasks. This study was included in the qualitative descriptive study. In this study, the data collected is the data of student’s work and verbal data (the interview). The subjects were six students of 7th class of MTs Attariqie Malang 2014/2015 (Junior High School), with details of two high-ability students, two students capable of being, and two low-ability students. Students' understanding of the equal sign examined further by providing tests and interviews in six research subjects. Interviews were conducted individually after the students work on the problems individually. The mathematical task load arithmetic and algebra problems. Based on the results of the study, all subjects were able to understand the equal sign as operational and the equal sign as a substitution. For equal sign as the basic relational, only high-ability students were able to understand it. Understanding of medium and low student capable entrenched in the operational pattern that is an equal sign as operational cause confusion to understanding equal sign as the basic relational, eg, 14+11=25+8 where students only pay attention to the results of operations that 14 plus 11 is 25 without notice relation of the addition of 8.
Kesulitan Peserta Didik dalam Menyelesaikan Soal Program Linear pada Pembelajaran Daring Laily Wijayanti Utami; Erry Hidayanto; Sisworo Sisworo
Mosharafa: Jurnal Pendidikan Matematika Vol 11, No 2 (2022)
Publisher : Institut Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (610.725 KB) | DOI: 10.31980/mosharafa.v11i2.1395

Abstract

Peserta didik mengalami kesulitan dalam pembelajaran daring matematika. Penelitian ini bertujuan untuk mendeskripsikan kesulitan peserta didik dalam menyelesaikan permasalahan program linear pada pembelajaran daring. Subjek penelitian merupakan peserta didik kelas XII MIPA 1 SMAN 5 Pamekasan tahun pelajaran 2020/2021 sejumlah 29 peserta didik. Instrumen yang digunakan dalam penelitian berupa soal tes program linear sebanyak 2 soal bentuk uraian, soal tersebut sudah divalidasi sebelumnya oleh dua validator. Pengumpulan data dilakukan dengan cara observasi, pemberian soal tes dan wawancara. Jenis penelitian ini adalah penelitian kualitatif di mana data dikumpulkan melalui hasil pengerjaan soal program linear, observasi, wawancara, dan dokumentasi. Teknik analisis data dilakukan dengan beberapa tahap, yaitu reduksi data, penyajian data dan penarikan kesimpulan. Hasil penelitian menunjukkan bahwa peserta didik mengalami beberapa kesulitan dalam menyelesaikan program linear pada beberapa langkah, yaitu mengubah soal cerita program linear menjadi bentuk matematika, mengarsir dan menentukan daerah hasil penyelesaian, menentukan koordinat titik pojok pada daerah penyelesaian dan menarik kesimpulan.Students have difficulty learning mathematics online. This study aims to describe the difficulties of students in solving linear programming problems in online learning. The research subjects were students of class XII MIPA 1 SMAN 5 Pamekasan for the academic year 2020/2021 a total of 29 students. The instrument used in the study was in the form of linear program test questions as many as 2 questions in the form of descriptions, these questions had been previously validated by two validators. Data was collected employing observation, giving test questions, and interviews. This type of research is qualitative research where data is collected through the results of working on linear programming questions, observations, interviews, and documentation. The data analysis technique was carried out in several stages, namely data reduction, data presentation, and conclusion drawing. The results showed that students experienced some difficulties in completing linear programming in several steps, namely changing linear programming story problems into mathematical form, shading and determining the area of the solution, determining the coordinates of the corner points in the settlement area, and drawing conclusions.
Analisis Interaksi Siswa pada Aktivitas Diskusi Kelompok dalam Pembelajaran Matematika Secara Daring Aulia Nadia Sari; Subanji Subanji; Sisworo Sisworo
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 5 No 3 (2021): Volume 5 Nomor 3 Tahun 2021
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v5i3.949

Abstract

Pandemi Covid-19 masuk dan menyerang Indonesia sejak awal 2020. Pandemi ini memberikan dampak kepada masyarakat terutama bidang Pendidikan. Sekolah ditutup dan pembelajaran dilakukan secara online. Meskipun demikian, penciptaan suasana interaksi siswa menjadi hal yang penting untuk pembeljaran bermakna. Penelitian ini bertujuan untuk mendeskripsikan interaksi siswa pada aktivitas diskusi kelompok dalam pembelajaran matematika secara daingSampel penelitian ini adalah siswa kelas XI SMAN 1 Giri Banyuwangi. Subjek penelitian adalah tiga kelompok siswa kelas XI MIA 6 dengan masing-masing kelompok terdiri dari 5 siswa. Metode penelitian yang digunakan adalah metode penelitian kualitatif dengan pendekatan naratif. Teori pemosisian menunjukkan bagaimana siswa menentukan posisi berdasarkan percakapan. Selain itu alur cerita juga dapat dilihat dari bagaimana siswa melakukan negosiasi. Hasil penelitian menyatakan bahwa siswa melakukan berbagai gerakan pada saat berinteraksi. Banyaknya pertukaran pengetahuan lebih dari banyaknya pertukaran tindakan. Ahli dan pemula dapat diidentifikasi dengan jelas, sedangkan fasilitator tidak dapat diidentifikasi dengan jelas. Objek yang sering didiskusikan terkait dengan produk dan sumber daya. Berdasarkan arah tantangan, interaksi dapat dikelompokkan dalam dua bentuk yang berbeda yaitu bentuk kompleks dan bentuk sederhana. Bentuk kompleks terdiri dari dua arah yaitu tantangan diri sendiri dan tantangan kepada orang lain. Bentuk sederhana terdiri dari satu arah tantangan, yaitu tantangan diri sendiri.
Profil Kemampuan Pemecahan Masalah Matematis Siswa dalam Menyelesaikan Soal Open-Ended SPLDV Kelas XI MTs Al-Islah Citrodiwangsan Lumajang Nilta Ilmiyatur Rosidah; I Nengah Parta; Sisworo Sisworo
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 6 No 2 (2022): Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 6 Nomor 2 Tahun 2022
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v6i2.1045

Abstract

Kemampuan pemecahan masalah matematika menjadi bekal dalam menghadapi perkembangan zaman saat ini, sementara soal open-ended memberikan banyak peluang kepada siswa dalam mengembangkan kemampuan pemecahan masalah matematisnya. Penelitian dilakukan pada siswa kelas XI MTs Al-Islah Citrodiwangsan Lumajang pada tanggal 01 September 2021. Pemilihan subjek dilakukan secara purposive sampling Pengumpulan data menggunakan tes soal kemampuan pemecahan masalah open-ended dan wawancara. Penelitian ini menggunakan pendekatan deskriptif kualitatif. Analisis data kualitatif melalui reduksi data, penyajian data dan penarikan kesimpulan. Berdasarkan hasil penelian yang telah dilakukan bahwa kemampuan pemecahan masalah matematis subjek ST dapat dikategorikan sangat baik karena mampu melaksanakan keempat tahapan polya, subjek SS dikategorikan memiliki kemampuan pemecahan masalah yang baik karena mampu melaksanakan tiga tahapan polya tanpa melakukan pengecekan ulang, dan subjek SR hanya dapat melaksanakan dua tahapan Polya yaitu memahami masalah dan merencanakan penyelesaian dengan menghasilkan jawaban salah, sehingga dikategorikan memiliki kemampuan pemecahan masalah yang kurang baik, masing-masing subjek sedikitnya membuat dua strategi penyelesaian yang berbeda
Student’s thinking path in mathematics problem-solving referring to the construction of reflective abstraction Patma Sopamena; Toto Nusantara; Eddy Bambang Irawan; Sisworo Sisworo; Kamirsyah Wahyu
Beta: Jurnal Tadris Matematika Vol. 11 No. 2 (2018): Beta November
Publisher : Universitas Islam Negeri (UIN) Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20414/betajtm.v11i2.230

Abstract

[English]: This article is a part of research which aimed to reveal the path of undergraduate students’ thinking in solving mathematical problems referring to the construction of reflective abstraction. Reflective abstraction is the process of thinking in constructing logical structures (logico-mathematical structures) by individuals through interiorization, coordination, encapsulation, and generalization. This article seeks to analyze a student with the simple closed path, as one of the two types of students’ thinking path found in the research, in solving limit problems. The thinking process of the student in solving mathematical problems occurred through the path of interiorization - coordination - encapsulation - generalization then to coordination - encapsulation - generalization. The path of the student’s thinking yields alternative to understand and marshal problem-solving activities in mathematics learning. Keywords: Thinking path, Limit problem, Reflective abstraction, Simple closed path [Bahasa]: Artikel ini merupakan bagian dari penelitian yang bertujuan mengungkap jalur berpikir mahasiswa dalam menyelesaikan masalah matematika berdasarkan konstruksi abstraksi reflektif. Abstraksi reflektif merupakan proses berpikir individu dalam membangun struktur logika (struktur matematis logis) melalui interiorisasi, koordinasi, enkapsulasi, dan generalisasi. Artikel ini akan menganalisis seorang mahasiswa yang memiliki jalur berpikir tertutup sederhan, salah satu dari dua jalur berpikir yang terungkap dalam penelitian, dalam menyelesaikan permasalahan limit. Proses berpikir mahasiswa dalam menyelesaikan masalah matematika berdasarkan konstruksi abstraksi reflektif dapat terjadi melalui jalur interiorisasi – koordinasi – enkapsulasi – generalisasi kemudian ke koordinasi – enkapsulasi – generalisasi. Hasil penelitian ini memberikan alternatif dalam memahami dan merancang aktivitas pemecahan masalah dalam pembelajaran matematika. Kata kunci: Jalur berpikir, Masalah limit, Abstraksi reflektif, Jalur tertutup sederhana
Pembelajaran Matematika Berbantuan Video Pembelajaran untuk Meningkatkan Motivasi dan Hasil Belajar Peserta Didik Agus Yulianto; Sisworo Sisworo; Erry Hidayanto
Mosharafa: Jurnal Pendidikan Matematika Vol 11, No 3 (2022)
Publisher : Institut Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (672.059 KB) | DOI: 10.31980/mosharafa.v11i3.1396

Abstract

Kemampuan guru memilih media dan mengemas proses belajar mengajar sangat menentukan keberhasilan belajar. Sebab, minat siswa dalam menggunakan buku teks masih kurang. Penelitian bertujuan menerpakan video pembelajaran guna meningkatkan motivasi dan hasil belajar. Video pembelajaran dibuat untuk mendampingi LKPD. Subyek penelitian adalah 36 siswa kelas X Akuntansi salah satu SMKN di Trenggalek. Data hasil penelitian di olah dan dianalisis secara deskriptif. Siswa pada awalnya diberikan Vidio pembelajaran dan LKPD melalui WAG, selanjutnya sesuai jadwal masuk ke googlemeet yang sudah disediakan untuk pembahasan apa saja yang kurang jelas dari video pembelajaran. Hasil penelitian menunjukkan peningkatan motivasi belajar dan hasil belajar siswa, meliputi: Siswa aktif dalam mengikuti kegiatan pembelajaran daring, menyelesaikan LKPD yang diberikan tepat waktu sesuai dengan petunjuk yang diberikan, dan prestasi siswa meningkat dengan bantuan Vidio Pembelajaran. Pada siklus 1 tingkat ketuntasan peserta didik mencapai 77,8 % dan pada siklus II mencapai 92%. Video pembelajaran terbukti bermanfaat dalam meningkatkan motivasi belajar.The teacher's ability to choose the media and package the teaching and learning process will determine success in learning. That was because students' interest to use textbooks is still lacking. This study aims to apply a learning video to increase motivation and learning outcomes. Learning videos made to accompany LKPD. The research subjects were 36 X student's Accounting at one of the Vocational High Schools in Trenggalek. Data from the research were processed and analyzed descriptively. Students are initially given learning videos and LKPD through WAG, then, according to the schedule enter the google meet that has been provided to discuss anything that is not clear from the learning video. The results showed an increase in motivation and student learning outcomes, including students being active in participating in online learning activities, students completing the LKPD given on time according to the instructions given, and student achievement increased with the help of learning videos. In cycle 1, the level of completeness of students reached 77.8%, and in cycle II, it reached 92%. Learning videos are proven to be useful in increasing learning motivation.
CREATIVE THINKING ABILITIES OF PROSPECTIVE MATHEMATICS TEACHERS IN SOLVING OPEN-ENDED TRIGONOMETRY PROBLEM Erisca Lusy Rusdianti; Hendro Permadi; Sisworo Sisworo
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 12, No 1 (2023)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (899.952 KB) | DOI: 10.24127/ajpm.v12i1.6676

Abstract

The current technological developments require students to have creative thinking skills. One of the four thinking skills needed in the 21st century is creative thinking skills which is still lacking in students. The purpose of this study was to describe prospective mathematics teachers’ creative thinking skills in solving open-ended trigonometry problems. This research is descriptive qualitative research. This study involved 40 prospective mathematics teachers who were then reduced to four subjects based on high and medium mathematical abilities which were studied in more depth in solving open-ended trigonometry problems. The research instruments used in this study were the researcher, interview guide, and open-ended trigonometry questions. The results of collegers work were analyzed based on aspects and levels of creative thinking skills. In this study, the data analysis phase includes data reduction, data presentation, and conclusion. Then triangulated the data in describing the results of the study. The results of this study are that first colleger with high mathematical abilities meet the aspects of fluency and novelty and the second fulfills the aspects of fluency and flexibility. First colleger with medium abilities fulfill the flexibility aspect and the second fulfills the novelty aspect. So, it can be concluded that collegers with high and medium mathematical abilities were solving open-ended trigonometry problems have a creative level and quite creative.
Profile of Students’ Argumentation Ability Based On Adversity Quotient In Statistical Problem Zuhadur Ra'is Ariyono Putra; Rustanto Rahardi; Sisworo Sisworo; Hendro Permadi
Jurnal Pendidikan Matematika IKIP Veteran Semarang Vol 7 No 1 (2023): Journal of Medives : Journal of Mathematics Education IKIP Veteran Semarang
Publisher : Urogram Studi Pendidikan Matematika, Universitas IVET

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (578.118 KB) | DOI: 10.31331/medivesveteran.v7i1.2330

Abstract

Argumentative ability can be seen from the argumentation pattern that appears. This pattern needs to be evaluated to look over the quality of the argumentation to make the right problem-solving. This evaluation can be done by recognizing the components that make up the argument. This study goals to describe students' argumentation abilities in solving statistical problem based on Adversity Quotients (AQ). This qualitative descriptive research elaborated 39 students taking a statistical methods course. Subjects were grouped into three types of Adversity Quotient based on the ARP (Adversity Response Profile) questionnaire results. Data were obtained using statistical problem tests and interviews. The outcomes showed three levels of AQ found in students, namely Camper, Toward Climber, and Climber. Camper-type students bring up the Claim-Data-Warrant pattern. Students with AQ levels towards climbers tend to have the same pattern as the Camper type. In comparison, students with the AQ Climber type have a Claim-Data-Warrants-Backing pattern. Based on the outcomes of the study, it can see that students' argumentation skills are determined by the Adversity Quotient level they have when solving statistical problems.
Co-Authors 'Azizah, Dewi Nur Abdur Rahman As’ari Abdur Rohim, Abdur Agus Yulianto Amalia Martha Santosa Amanda Putri Enlisia Anas Ma’ruf Annizar Andrian Runtius Lalang Andrian Runtius Lalang Ardiansyah, Izza Aulia Nadia Sari Barep Yohanes Bayu Nugroho Cholis Sa’dijah Dahliatul Hasanah Daiana, Putri Darmawan Satyananda Diyah Ayu Rizki Pradita Dwiyana Dwiyana Eddy Bambang Irawan Edy Bambang Irawan Erisca Lusy Rusdianti Erry Hidayanto Faradina, Erta Florianus Aloysius Nay Gatot Muhsetyo HAFIIZH, MOCHAMMAD Hasan Basri Hidayati, Vivi Rachmatul I Nengah Parta Ikhsana, Aulia Ilmiyatur Rosidah, Nilta Indah Puspitasari Maharani Indayani, Nunik Ipung Yuwono, Ipung Izzah, Nuurul Kamirsyah Wahyu Laily Wijayanti Utami Lathiful Anwar Lela Nur Safrida Mahmuddin Yunus Maimunah Maimunah Maimunah, Maimunah Makbul Muksar Mariana, Erna Mei Radia Putri Mirza Amelia Oktaviani Mohammad Akbar Muazarah, Salma Farihah Muhammad Irfan Nadia Nurudini Naela Nur Azizah Niila Amaalia Chasanah Nila Puspita Dewi Nilta Ilmiyatur Rosidah Nugraheni, Dinda Dwi Nugroho, Herlambang Tri Nunik Indayani Parta, I Negah Patma Sopamena Permadi, Hendro Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Putra, Zuhadur Ra'is Ariyono Qohar, Abd. Raey Hanah Rani Martalisa Taorina Refni Adesia Pradiarti Rifaatul Mahmudah Rustanto Rahardi Safitri, Rizqi Febriana Sartati, Setiawan Budi SATRIYAS ILYAS Setiawan Budi Sartati Shofi Farihah Muazarah Subanji Subanji Suci Zuhriati Sudirman Sudirman Sudirman Sudirman Sukoriyanto Susiswo Swalaganata, Galandaru Swasono Rahardjo Tasni, Nurfaida Tiwi Nur Masita Tjang Daniel Chandra Toto Nusantara Ulfa Rahmawati Untu, Zainuddin Untu Wasti Tampi Wasti Tampi Yandi Raharjo, Eko Yayan Eryk Setiawan Yudha, Sri Indah Dwirahmasari Zuhadur Ra'is Ariyono Putra