This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Rekam : Jurnal, Fotografi, Televisi Animasi SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Teknologi Informasi dan Ilmu Komputer KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Jurnal Bioedukasi JOIN (Jurnal Online Informatika) Sistemasi: Jurnal Sistem Informasi Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika International Journal of Artificial Intelligence Research Jurnal Sains Dan Teknologi (SAINTEKBU) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Applied Information System and Management ILKOM Jurnal Ilmiah MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Journal of Economic, Management, Accounting and Technology (JEMATech) KOMPUTIKA - Jurnal Sistem Komputer Jambura Journal of Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Bitnet: Jurnal Pendidikan Teknologi Informasi EDUMATIC: Jurnal Pendidikan Informatika METIK JURNAL Building of Informatics, Technology and Science Gema Wiralodra Dinasti International Journal of Education Management and Social Science Jurnal Tecnoscienza Jurnal Mnemonic Journal Cerita: Creative Education of Research in Information Technology and Artificial Informatics PRAJA: Jurnal Ilmiah Pemerintahan JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) JIKA (Jurnal Informatika) Community Development Journal: Jurnal Pengabdian Masyarakat Jurnal Perangkat Lunak Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) Jurnal Teknologi Informatika dan Komputer Journal of Computer Networks, Architecture and High Performance Computing Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) JINAV: Journal of Information and Visualization International Journal of Artificial Intelligence and Robotics (IJAIR) Mitra Mahajana: Jurnal Pengabdian Masyarakat Jurnal Informatika dan Teknologi Komputer ( J-ICOM) DEVICE Djtechno: Jurnal Teknologi Informasi JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem dan Komputer JURNAL STUDIA KOMUNIKA Jurnal Pengabdian Seni KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen Journal Computer Science and Informatic Systems : J-Cosys Jurnal Mandiri IT Sulawesi Tenggara Educational Journal JURNAL PAI: Jurnal Kajian Pendidikan Agama Islam Jurnal Sisfotek Global International Journal Artificial Intelligent and Informatics Jurnal Informatika Teknologi dan Sains (Jinteks) Journal of Innovation Research and Knowledge Malcom: Indonesian Journal of Machine Learning and Computer Science Jurnal Bangkit Indonesia Jurnal Multidisiplin Sahombu COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi JEC (Jurnal Edukasi Cendekia) Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Scientific Journal of Informatics Pengabdian Seni Jurnal Sistem Informasi Komputer dan Teknologi Informasi Jurnal TAM (Technology Acceptance Model) Jurnal Sistem Informasi dan Teknologi Informasi
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Teknik Informatika (JUTIF)

DEGREE: Development and Validation of a User Experience Model for Digital Educational Games Using Cronbach’s Alpha and Fuzzy Logic Kurniawan, Mei Parwanto; Suyanto, M.; Utami, Ema; Kusrini, Kusrini
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4942

Abstract

The rapid growth of digital educational games demands an evaluation model that accurately captures user experience and adopts a human-centred approach. This study introduces DEGREE (Digital Educational Game Review and Evaluation Engine), an enhanced model extending MEEGA+ by incorporating two previously underrepresented dimensions: Control and Feedback. Using a quantitative approach, questionnaires were distributed to high school students who actively use Minecraft and Duolingo, yielding 4800 responses.Reliability analysis via Cronbach’s Alpha revealed that the Player Experience + Control combination achieved the highest score (α = 0.914), while the inclusion of Feedback reduced reliability (α = 0.864), leading to its exclusion in the final model. The DEGREE model consists of two core domains: Usability (Aesthetics, Learnability, Operability, Accessibility) and Player Experience (Focused Attention, Fun, Challenge, Social Interaction, Confidence, Relevance, Satisfaction, Perceived Learning, User Error Protection, Control). Evaluation scores were calculated using the Fuzzy Weighted Average (FWA) method and Mean of Maximum (MoM) defuzzification. The Control dimension emerged as the most influential (0.2735), followed by Fun (0.2664) and Satisfaction (0.2516), highlighting the significance of user agency in digital learning environments. The DEGREE model offers a statistically robust and user-oriented framework for evaluating educational games, delivering actionable insights for developers and educators to design more effective and engaging digital learning experiences. This study contributes a new validated and generalizable evaluation framework that strengthens the theoretical foundation of user experience assessment in educational game design.
COMPARISON OF LEAST SQUARE AND QUADRATIC METHODS ON PREDICTION THE NUMBER OF NEW STUDENT APPLICANTS Atin Hasanah; Kusrini, Kusrini; Kusnawi, Kusnawi
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 6 (2023): JUTIF Volume 4, Number 6, Desember 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.6.1124

Abstract

New student registration is held every year with several mechanisms. However, in recent years the number of applicants has decreased even though it had experienced a surge in the previous year. So that, it is necessary to have a prediction to predict the number of applicants in the coming year. In addition, the results of these predictions can be used as material for consideration in determining the quota/ceiling for the number of new student admissions in the following academic year. This research used the Least Square and Quadratic methods to predict the number of new student applicants based on data on the number of applicants from the 2014/2015 to 2022/2023 academic years. Performance testing of the two methods was tested with three (3) testing methods : MAE, MAPE, and MSE. The performance test found that the Quadratic method is more suitable with the MAPE value in the "Good" forecasting accuracy category, which is 11%. For the MAE value, it gets 452,17 and an MSE of 302069,04. While Least Square produces a MAPE value in the "Enough" forecasting accuracy category of 30%, for the MAE value, it gets 996,97 and an MSE of 1494205,36.
COMPARISON OF ACCURACY LEVELS OF RANDOM FOREST AND K-NEAREST NEIGHBOR (KNN) ALGORITHMS FOR CLASSIFYING SMOOTH BANK CREDIT PAYMENTS Aji Santoso, Bayu; Kusrini, Kusrini; Hartanto, Anggit Dwi
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.1195

Abstract

Providing credit is one of the bank offers offered to customers, but extending credit to customers who are not appropriate can cause problems such as customers who do not pay installments on time and even delay payment of installments for several months until bad credit occurs so that this can be detrimental to the bank. Therefore, in this study a comparative method will be carried out to find out which method is the best in classifying the smoothness of bank credit payments. It is hoped that the results of the research can be used as material for consideration by the bank in the selection of bank credit customers. In this study using a dataset from the UCI Machine Learning Repository, the credit payment data totaled 29,998. The dataset is split by dividing 70% train data and 30% test data with the amount of each data, namely 24000 train data and 6000 test data. Meanwhile, the labels used are Eligible and Ineligible. In this study, implementing the data mining process using the CRISP-DM framework and using the Python programming language. From the results of the evaluation using the confusion matrix, the best accuracy value was obtained for the random forest algorithm, namely 82.22%, precision of 80.44%, recall of 82.22% and f1-score of 80.0%. Meanwhile, the KNN algorithm obtains an accuracy value of 81.55%, a precision of 79.5%, a recall of 81.55% and an f1-score of 79.11%. Based on the results of this evaluation, the Random Forest algorithm has the best accuracy compared to the KNN algorithm in classifying bank credit payments.
Improving Infant Cry Recognition Using MFCC And CNN-Based Audio Augmentation Setyoningrum, Nuk Ghurroh; Utami, Ema; Kusrini, Kusrini; Wibowo, Ferry Wahyu
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4373

Abstract

Recognizing infant cries is essential for understanding a baby's needs; however, previous research has struggled with imbalanced datasets and limited feature extraction techniques. Conventional methods utilizing CNN without data augmentation often failed to accurately classify minority classes such as belly pain, burping, and discomfort, resulting in biased models that predominantly recognized majority classes. This study proposes an MFCC-based data augmentation pipeline, incorporating time stretching, pitch scaling, noise addition, polarity inversion, and random gain adjustments to increase dataset diversity and enhance model generalization. By applying this approach, the dataset size was expanded from 457 to 8,683 samples, and a CNN model with three convolutional layers, ReLU activation, and max pooling was trained for cry pattern classification. The results indicate a substantial accuracy improvement from 78% to 98%, with F1-scores for minority classes rising from 0.00 to above 0.90, confirming that augmentation effectively addresses dataset imbalance. This research advances computer science and artificial intelligence, particularly in audio signal processing and deep learning for healthcare applications, by demonstrating the role of data augmentation in improving cry classification performance. Future directions include integrating multimodal data (visual and physiological signals), exploring advanced deep learning architectures, and developing real-time applications for smart baby monitoring systems to further enhance infant cry recognition technology.
Improving Model Capability for Sentiment Trend Analysis in Hotel Visitor Reviews with Bi-LSTM Multistage Approach Yanuargi, Bayu; Utami, Ema; Kusrini, Kusrini; Parikesit, Arli Aditya
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.5185

Abstract

This study focuses to improve the sentiment analysis of hotel reviews using Multistage mechanism of two-stage approach based on the Bidirectional Long Short-Term Memory (Bi-LSTM) architecture with 53,000 data from 28 hotels in Yogyakarta that captured from google maps review for hotel in Yogyakarta. Hotel customer reviews often contain mixed sentiment expressions, making it crucial to filter out only sentences with a single dominant sentiment to avoid ambiguity. In the first stage, the model detects sentiment at the token level and counts the number of sentiment expressions in each sentence. Only sentences with a single polarity are passed to the final classification stage. In the second stage, the overall sentiment is classified as positive, negative, or neutral using pooled contextual representations. Experimental results from 30 iterations demonstrate consistently high performance, with precision, recall, and F1-scores above 0.95, and overall accuracy exceeding 96%. The confusion matrix analysis shows strong model performance, although some challenges remain in distinguishing between positive and neutral sentiment. Additionally, sentiment trend analysis of hotel reviews from properties such as Lafayette Boutique Hotel and The Westlake Resort Jogja reveals dynamic shifts in guest perception over time. This multistage mechanism approach proves effectiveness of improving sentiment classification accuracy by avoid the bias on sentiment and also in providing valuable temporal insights for monitoring customer satisfaction.
Co-Authors AA Sudharmawan, AA Abdillah, Yahya Auliya Abdullah, Mochamad Fadillah Achmad Oddy Widyantoro Ade Pujianto, Ade Adhani, Muhammad Azmi Agastya, I Made Artha agung budi AGUS PURWANTO Ahmad Yusuf Aji Santoso, Bayu Aji Susanto Anom Purnomo Alfatta, Hanif Alva Hendi Muhammad Andi Muhammad Irfan Andi Sunyoto Andika, Roy Andriyanto, Rifki Angga Kurniawan Anggit Dwi Hartanto, Anggit Dwi Anggraeni, Meita Dwi Ardana, Wildan Muhammad Ardana, Wildan Muhammmad Ardiansyah, Fachri Ari Yuana, Kumara Arief Setyanto Arief, M Rudyanto Arief, Muhammad Rudyanto Arifuddin, Danang Aris Subadi Arli Aditya Parikesit Asnawi, Muhamad Fuat Atin Hasanah Azi, Amanda Aziz, Moh Abdul Azkar, Azkar Bayu Setiaji Béjar, Rodrigo Martínez Bentar Candra P Bernadhed, Bernadhed Bisono, Hadi Hikmadyo Braeken, An Candra, Kurnia Khoirul da Silva, Bruno David Agustriawan DHANI ARIATMANTO Dzulhijjah, Dwi Ahmad Eko Pramono Eko Purwanto Ema Utami Emha Taufiq Luthfi Fatkhurrochman, Fatkhurrochman Fauzi, Moch Farid Fauzy, Marwan Noor Febrianti, Winda Febriyanti, Nada Rizki Ferry Wahyu Wibowo fitriyanto, nur Gifari, Okta Ihza Halimi, Ahmad Hamdikatama, Bimantyoso Hanafi Hanafi Hanif Al Fatta Haris, Ruby Hartono, Anggit Dwi Haryo, Wasis Hasan, Nur Fitrianingsih Hasan, Nurul Rahmawati Herawati, Maimi Herlinawati, Noor Hulvi, Alfajri I Putu Agus Ari Mahendra Ikhwanudin, Aolia Ilmawati, Fahma Inti Jeki Kuswanto Juwariyah, Siti Kasman, Haris Saktiawan Kurniasari, Iin Kusnawi , Kusnawi Kusnawi Kusnawi Lewu, Retzi Y. Linda, Kumara Dewi Listyanto, Ahmad Wildan López, Alba Puelles Lukman Bachtiar M. RUDYANTO ARIEF M. Suyanto, M. Madhika, Yudha Randa Mahendra, Awanda Putra Mangun, Syamsul Syahab Maradona, Maradona Mardiana Mardiana Martínez-Béjar, Rodrigo Masud, Ibnu maulana, fahrizal Megantara, Muhamad Arldi MEI PARWANTO KURNIAWAN Metha, Halifa Sekar Miftachuddin, Achmad Agus Athok Mohamad Firdaus, Mohamad Mohammad Diqi Mohammad Rezza Pahlevi Moningka, Nirwan Mufti Ari Bianto Muhamad Iksan, Muhamad Muhammad Resa Arif Yudianto Muktafin, Elik Hari Muzakir, Muhammad MZ, Reza Rafiq Nasiri, Asro Ngaeni, Nurus Sarifatul Ni Nyoman Utami Januhari, Ni Nyoman Nugroho, Agung Nugroho, Hanantyo Sri Nuk Ghurroh Setyoningrum Oktafiqurahman, Andi Olajuwon, Sayyid Muh. Raziq Onde, Mitrakasih La ode Oscar Samaratungga Pamoengkas, Muhamad Agoeng Pamungkas, Sapto Pradipta, Dody Prameswari, Sonia Anjani Prasetio, Agung Budi Prastyo, Rahmat Pratama, Muhammad Egy Puri, Fiyas Mahananing Purnamasari, Resti Putra, Andriyan Dwi Rachmawati Oktaria Mardiyanto RAMADHAN, SYAIFUL Rasyid, Magfirah Raynald Alfian Yudisetyanto Riduan, Nor Rizkayati, Anisa S, Muhamad Rois S, Muhammad Sabri Saleh, Robby Febrianur Samponu, Yohakim Benedictus Santosa, Hendriansyah SANTRI SANTRI Saputro, Moh. Rizal Bayu Sarawan, Tommy Selvy Megira, Selvy Semma, Andi Bahtiar Sentoso, Thedjo Setiawan, Moh. Arif Ma'ruf Setyanto, Arif Siswo Utomo, Mardi Solikin, Arif Fajar Sudarmawan, Sudarmawan Sudarto Sudarto Swastikawati, Claudia Syafutra, Arif Dwi Syaiful Huda Tala, WD. Syarni Tampubolon, Jandri Tamuntuan, Virginia Toifur, Tubagus TONNY HIDAYAT Tri Nugroho, Arief triadin, Yusrinnatul Jinana Tukan, Ewaldus Ambrosius Ula, M. Izul Wahyu Pujiharto, Eka Wahyudi, Alfian Cahyo Wangsa, Sabda Sastra Wijaya, Jodi Wiwi Widayani, Wiwi Yanuargi, Bayu Yossy Ariyanto Yuana, Kumara Ari Yuza, Adela Zakaria Zakaria Zuhri, Muhammad Rafli Zulkarnain, Imam Alfath Zumarni, Zumarni