Claim Missing Document
Check
Articles

Optimasi Random Forest Menggunakan Genetic Algorithm untuk Klasifikasi Kualitas Udara Berdasarkan Data ISPU(Indeks Standar Pencemaran Udara) Albert Ramadhan Manik; Alfin Syahri; Adidtya Perdana
Jurnal Intelek Dan Cendikiawan Nusantara Vol. 2 No. 6 (2025): Desember 2025 - Januari 2026
Publisher : PT. Intelek Cendikiawan Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kualitas udara merupakan faktor penting yang berdampak langsung terhadap kesehatan manusia dan lingkungan. Peningkatan aktivitas industri, transportasi, dan urbanisasi menyebabkan konsentrasi polutan udara semakin tinggi, sehingga diperlukan metode klasifikasi kualitas udara yang akurat sebagai dasar pengambilan keputusan. Penelitian ini bertujuan untuk meningkatkan performa algoritma Random Forest dalam mengklasifikasikan kualitas udara berdasarkan Indeks Standar Pencemaran Udara (ISPU) melalui optimasi hyperparameter menggunakan Genetic Algorithm (GA). Dataset yang digunakan berupa data kualitas udara harian wilayah Tangerang Selatan periode 2020–2022, dengan enam parameter polutan utama yaitu PM2.5, PM10, SO₂, CO, O₃, dan NO₂, serta tiga kategori kualitas udara: Good, Moderate, dan Unhealthy. Tahapan penelitian meliputi preprocessing data, pembagian data secara stratified, pelatihan model Random Forest baseline, optimasi hyperparameter menggunakan GA, serta evaluasi performa model. Hasil penelitian menunjukkan bahwa optimasi menggunakan Genetic Algorithm mampu meningkatkan akurasi pengujian dari 81,73% menjadi 82,23% serta mengurangi indikasi overfitting pada model. Analisis feature importance menunjukkan bahwa CO dan PM2.5 merupakan parameter paling berpengaruh dalam klasifikasi kualitas udara. Hasil ini membuktikan bahwa Genetic Algorithm efektif digunakan untuk mengoptimasi Random Forest dan meningkatkan akurasi klasifikasi kualitas udara berbasis ISPU.
Optimasi Kurva Daya Turbin Angin Menggunakan Model Logistic Berbasis Particle Swarm Optimization (PSO) Henrydunan, John Bush; Purba, Jogi; Amanah, Fadilla; Perdana, Adidtya
Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi Vol. 3 No. 4 (2025): November: Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/neptunus.v3i4.1252

Abstract

Accurate wind turbine power curve modeling plays a crucial role in performance evaluation, energy yield estimation, and data-driven control strategies. However, actual power curves often exhibit non-linear behavior influenced by atmospheric variability, measurement noise, and SCADA anomalies, making conventional modeling approaches less effective. This study proposes an optimized logistic power curve model whose parameters are tuned using Particle Swarm Optimization (PSO) to improve predictive accuracy. The analysis uses the Wind Turbine SCADA Dataset from Kaggle, which undergoes extensive preprocessing including physical rule filtering, outlier detection with the Interquartile Range (IQR) method, anomaly removal, and smoothing of the power signal. A three-parameter logistic model is selected due to its ability to capture the typical S-shaped relationship between wind speed and power output. PSO is applied to identify optimal model parameters by minimizing the Mean Squared Error (MSE), utilizing 40 particles over 200 iterations. The optimized model achieves strong predictive performance with RMSE of 404.09, MAE of 179.96, and R² of 0.904 on the test set, indicating that more than 90% of the variability in actual power can be explained by wind speed. Residual analysis reveals heteroscedastic patterns and slight overestimation in mid-range wind speeds, yet overall model consistency remains high. Comparative evaluation against Linear Regression, Random Forest, and logistic modeling using curve_fit shows that the Logistic–PSO approach provides the most accurate and stable predictions. These findings demonstrate that combining logistic modeling with PSO offers an effective and robust method for data-driven wind turbine power curve optimization.
Optimasi Parameter Model LightGBM Menggunakan Algoritma Grey Wolf Optimizer untuk Prediksi Penyakit Ginjal Kronis Muhammad Alfin; Alvin Hafiz; Muhammad Budi Akbar; Adidtya Perdana
Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi Vol. 3 No. 4 (2025): November: Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/neptunus.v3i4.1263

Abstract

Chronic kidney disease is an increasingly prevalent health issue that requires more precise clinical data-based early detection methods to enable timely and appropriate treatment. This study focuses on developing a predictive model for chronic kidney disease using the Light Gradient Boosting Machine (LightGBM) algorithm and enhancing its performance through hyperparameter optimization with the Grey Wolf Optimizer (GWO). The dataset used originates from public sources and undergoes several preprocessing steps, including missing value imputation, categorical feature encoding, outlier handling, initial feature selection, and stratified data splitting to maintain model quality. Three modeling approaches were evaluated: LightGBM with default parameters, LightGBM enhanced using Random Search, and LightGBM optimized with GWO. The experimental results indicate that the baseline model already performs well, Random Search improves accuracy and F1-score, and GWO achieves the highest AUC-ROC value despite requiring longer computation time. Significance testing through cross-validation shows that the performance differences among the three models are not statistically significant, suggesting that the observed improvements are not strong enough to determine a definitively superior optimization method. The feature importance analysis highlights that clinical indicators such as creatinine levels, glomerular filtration rate, blood pressure, and urine protein contribute most prominently to the prediction. Overall, the study demonstrates that LightGBM is a reliable model for early detection of chronic kidney disease, and hyperparameter optimization still offers added value that can support the development of AI-based clinical decision-support systems
Feature Selection pada Dataset NSL-KDD Menggunakan Algoritma Genetic Algorithm untuk Deteksi Serangan Jaringan Freyro Dobry Sianipar; Ruth Amelia Vega S Meliala; Yoseph Christian Sitanggang; Adidtya Perdana
Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi Vol. 3 No. 4 (2025): November: Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/neptunus.v3i4.1275

Abstract

Information system security faces serious challenges due to increasingly complex cyber attacks. Intrusion Detection Systems (IDS) require efficient approaches to handle high-dimensional data such as the NSL-KDD dataset with 41 features. This study aims to implement the Genetic Algorithm (GA) for feature selection on the NSL-KDD dataset to improve the efficiency and accuracy of network attack detection. The method used is computational experimental research, involving data preprocessing, GA implementation for feature selection, building a classification model using Random Forest, and performance evaluation based on accuracy, precision, recall, F1-score, and computation time. The results show that GA successfully reduced features from 41 to 12 features (70.7% reduction), significantly improving computational efficiency. However, model accuracy slightly decreased from 0.4973 to 0.4951, indicating that while GA is effective for feature selection, the elimination of certain features may reduce classification capability. The implication of this study is that GA can be used as a tool to simplify intrusion detection models, but it should be combined with parameter optimization and data imbalance handling to achieve more optimal performance.  
Pengembangan Aplikasi To-DoListKu sebagai Sistem Pengingat Tugas dan Agenda Pribadi Menggunakan Flutter Hasibuan, Muhammad Alby Savana; Farezi, Nazwar; Lubis, Fauzan Azima; Tanjung, Muhammad Raffi Akbar; Sagala, Khairul Fahmi; Perdana, Adidtya
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 8, No 6 (2025): Desember 2025
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v8i6.9900

Abstract

Abstrak - Perkembangan teknologi informasi di perangkat mobile membuat semakin banyak kebutuhan akan aplikasi yang bisa membantu pengguna mengatur waktu dan kegiatan sehari-hari. Penelitian ini bertujuan membuat aplikasi “To-DoListKu” sebagai alat untuk mengingat tugas dan jadwal pribadi, dengan menggunakan teknologi Flutter. Metode yang digunakan adalah Research and Development (RD) dengan model Waterfall, yang terdiri dari analisis kebutuhan, perancangan, pembuatan, pengujian, dan pemeliharaan. Aplikasi ini memiliki fitur menambah, mengubah, menghapus, dan menandai tugas selesai, dengan penyimpanan data menggunakan SharedPreferences. Hasil pengujian dengan metode Black Box menunjukkan semua fitur berjalan lancar tanpa error atau crash, waktu respons kurang dari satu detik, dan penggunaan memori sekitar 30-45 MB. Aplikasi ini dinilai responsif dan mudah digunakan karena menggunakan desain sederhana berbasis Material Design. Kesimpulannya, aplikasi “To-DoListKu” bisa membantu pengguna mencatat dan memantau kegiatan dengan efisien, stabil, dan praktis, bahkan tanpa koneksi internet. Untuk pengembangan selanjutnya, disarankan menambahkan integrasi cloud, sistem login pengguna, serta evaluasi berkala tentang pengalaman pengguna untuk meningkatkan fungsionalitas dan keamanan aplikasi.Kata kunci : Flutter; To-Do List; Aplikasi Mobile; Manajemen Waktu; Pengingat Tugas; Abstract - The development of information technology in mobile devices has created an increasing need for applications that can help users manage their time and daily activities. This study aims to create the “To-DoListKu” application as a tool for remembering personal tasks and schedules, using Flutter technology. The method used is Research and Development (RD) with a Waterfall model, which consists of needs analysis, design, development, testing, and maintenance. This application has features for adding, changing, deleting, and marking tasks as completed, with data storage using SharedPreferences. Testing results using the Black Box method showed that all features ran smoothly without errors or crashes, with a response time of less than one second and memory usage of around 30-45 MB. This application is considered responsive and easy to use because it uses a simple design based on Material Design. In conclusion, the “To-DoListKu” application can help users record and monitor activities efficiently, stably, and practically, even without an internet connection. For further development, it is recommended to add cloud integration, a user login system, and periodic evaluations of the user experience to improve the functionality and security of the application.Keywords: Flutter; To-Do List; Mobile Application; Time Management; Task Reminder;
Co-Authors Ade Zulkarnain Adryan Rachmadsyah Ryan Afrrahman S. Effendi, Ali Agus Waruwu, Stefen Al Khowarizmi Albert Ramadhan Manik Alby Savana HSB, Muhammad Alfin Syahri Alfin, Muhammad Alvansyah, Oka Alvin Hafiz Amanah, Fadilla Amelia Br Siregar, Ririn Amelia Vega S. Meliala, Ruth Anak Agung Istri Sri Wiadnyani Ananda Hafika, Rizky Andi Marwan Elhanafi Anggi Silalahi Anwar Shaleh Lbn Gaol Aqilah Defiyanti Arief Budiman Arief Budiman Ashillah, Salma Asro Harahap, Fatima Audy Priscilia, Selfi Ayu Amelia Pwrtiwi Azhara Amelia H Azima Lubis, Fauzan Br. Hutagalung, Fhadillah Budi Akbar, Muhammad Bush Henrydunan, John Damayanti, Nina Afria Dedy Kiswanto Dian Septiana DIdi Febrian Dwi Syaputra Ega Pratama Ega Zuhairi Ramadhan Evanthe, Hansel Eviyona Laurenta Br Barus Fadilah, Putri Maulidina Fadilah, Putri Mauliidna Farezi, Nazwar Fatimah Asro Harahap Felix John Pardamean Hutabarat Freyro Dobry Sianipar Gulo, Steven Adventino Hafiz, Alvin Halawa, Sovantri Putra Paskah Hapzi Ali Hasibuan, Ade Zulkarnain Hasibuan, Muhammad Alby Savana Henrydunan, John Bush Ichwanul Muslim Karo Karo Ilyasyah Drilanang, Muhammad Imelda, Yusmita Impana Manik, Kristin Insan Pratama Siagian, Raihan Irya Shakila Syukron, Ananda Isa Hidayati Juliana, Feby Kana Saputra S Khoiriah, Najwatul Kokod, Mario Maysan Lestari, Yuyun Dwi Lubis, Fauzan Azima Manurung, Asrar Aspia mardiana Maulida Surbakti, Nurul Maulidina Fadila, Putri MD, Pipit Putri Hariani Mhd Zulfansyuri Siambaton Muhammad Alfin Muhammad Budi Akbar Muhammad Fauzan Akbar Muhammad Haikal Al Majid Muhammad Hidayatul Arifin Muhammad Khoiruddin Harahap Muhammad Kurniawan Muhammad Rivai Muhammad Yazid Noor Muhammad Zidane Al-Kautsar Muslim Sinaga, Rizal Nabila Harahap, Salsa Najwatul Khoiriah Nasution, Afifah Naila Nenna Irsa Syahputri Niska, Debi Yandra Nurul Ain Farhana Nurul Khairina Nurul Maulida Surbakti Panggabean, Suvriadi Panjaitan, Clara Kresensia Paskah Abadi Simanullang Pebiana Putri, Fahra Peter Tymoty Hutabarat Prana Walidin, Adamsyach Pratama, Ega Priscilia, Selfi Audy Purba, Jogi Putra Paskah Halawa, Sovantri Putri Handayani, Agata Raffi Akbar Tanjung, Muhammad Raihan Insan Pratama Siagian Ramadhan Manik, Albert Rangga Wahyu Pratama Rani Indah Sari Revidamurti Daulay Revidamurty Daulay Ririn Amelia Br Siregar Rizko Liza Rizky Ananda Hafika Rossy Pratiwy Sihombing Ruth Amelia Vega S Meliala Sagala, Khairul Fahmi Sapta Warman Zai, Tri Sarah Putri Nasutio. Sembiring, Febe Gracia Shaleh Lbn Gaol, Anwar Simanjuntak, Yesy Simbolon, Agata Putri Handayani Sinaga, Rizal Muslim Sri Dewi Stefen Agus Waruwu Sukma, Ayman Human Suleho, Febrina Syahri, Alfin Tambunan, Vivielda Farmawaty Tanjung, Muhammad Raffi Akbar Tasya Agustina Tampubolon, Putri Wahyudi, Rizky Windy Aulia Yazid Noor, Muhammad Yessi Fitri Annisa Lubis Yolandari, Nezza Anggraini Yoseph Christian Sitanggang Yuda Advis Ambrosius Sitohang Yulita Molliq Rangkuti Yuyun Dwi Lestari Yuyun Dwi Lestari Zai, Samuel Anaya Putra Zidane, Muhammad Zulfahmi Indra, Zulfahmi Zulfahrizan, Atta Zulfi, M. Fikri