Class imbalance remains a critical challenge in fake news detection, particularly in domains such as entertainment media where class distributions are highly skewed. This study evaluates seven resampling techniques—Random Oversampling, SMOTE, ADASYN, Random Undersampling, Tomek Links, NearMiss, and No Resampling—applied to three classical machine learning models: Logistic Regression, Support Vector Machine (SVM), and Random Forest. Using the imbalanced GossipCop dataset comprising 24,102 news headlines, the proposed pipeline integrates TF-IDF vectorization, stratified 3-fold cross-validation, and five evaluation metrics: F1-score, precision, recall, ROC AUC, and PR AUC. Experimental results show that oversampling methods, particularly SMOTE and Random Oversampling, substantially improve minority class (fake news) detection. Among all model–resampling combinations, SVM with SMOTE achieved the highest performance (F1-score = 0.67, PR AUC = 0.74), demonstrating its robustness in handling imbalanced short-text classification. Conversely, undersampling methods frequently reduced recall, especially with ensemble models like Random Forest. This approach enhances model robustness in fake news detection on skewed datasets and contributes a reproducible, domain-specific framework for developing more reliable misinformation classifiers.