Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Reconfigurable and Embedded Systems (IJRES)

Classification metrics for pet adoption prediction with machine learning Islamiyah, Islamiyah; Rivani Ibrahim, Muhammad; Gunawan, Suwardi; Marisa Khairina, Dyna; Erniati, Erniati
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 14, No 3: Nov 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v14.i3.pp638-648

Abstract

Millions of pets are temporarily placed in shelters, making it challenging for shelters to ensure pets find permanent homes. High adoption rates are crucial for animal welfare and the sustainability of shelter operations. This study aims to identify key factors influencing pet adoption and create classification metrics using five machine learning (ML) classification model approaches to predict the likelihood of pet adoption, to find the best model performance for each analysis. The dataset was obtained from several features related to animal characteristics and adoption conditions. The results of the study present classification of metric models that indicate decision tree and random forest (RF) as the most effective models with superior performance in terms of accuracy and class separation ability. Further research provides initial exploration of ML models that are not only limited to classification models but also model integration into internet of things (IoT) systems for the implementation of a pet adoption prediction system based on ML inference. The implementation of ML classification models helps improve the efficiency of animal adoption programs and optimize shelter operations, ultimately increasing the chances of successful pet adoption. The results of the study provide insights into factors influencing pet adoption, minimizing the length of stay (LOS) in shelters, and contribute to practitioners/ researchers as a reference for exploring new related factors and exploring the performance of ML models, especially classification models.
Co-Authors . Asmirah Abdul Afif Al Mufih, Abdul Afif Achmad, Andi Afrianto, Rendi Agus Rianto Ahzan, Sukainil Alifia, Shafa Nur Almunawar, Abdul Wahab Amal, Fakhmul Apdila, Irvan Arif, Afdinal Asniar Khumas, Asniar Baiquni, Muhammad Rizky Caesar Balan, Nicola Fernando Bevoor, Bevoor Dwi Novianti, Asri Dwi Noviyanti, Asri Dwi Wulandari Ningtias Purnama Erniati Erniati Fauziansyah, Afdillah Fiy, Muhammad Shun Fan'Ulum Gummah, Syifaul Gunawan, Suwardi Haeruddin Haeruddin Heriansyah, Zulfikar Ibrahim, Muhammad Rivani Ida Ayu Putu Sri Widnyani Irsyad, Akhmad Islaeli, Islaeli Istutik, Dwi Ita Merni Patulak Jafar, Eka Sufartianinsih Joan Angelina Widians, Joan Angelina Jundillah, Muhammad Labib Kamila, Vina Zahrotun Khoir Eko Pambudi, Khoir Eko LA ODE ANHUSADAR Leswono, Adham Khautsar Lintang Kironoratri Lutfianto, M. Maheran, Siti Marisa Khairina, Dyna Marroh, Zahrotul Istianah Mentik, Sulpisius Bernikusti Muhammad Labib Jundillah Muhammad Nabil Muhammad Rivani Ibrahim Mukhadharoh, Resy Meilinda Nataniel Dengen Pardosi, Josia Giribosar Pongdatu, Merry Praditya, Mohammad Ibnu Pratiwi, Inka Prayogi, Saiful Putri, Elsa Mardhiyah Deka Putri, Imelda Putut Pamilih Widagdo Putut Pamilih Widagdo, Putut Pamilih Qatrunnada, Salsabila Rafika Rahmawati Rahmah, Anisa Jannatul Refansyah, Muhammad Dwi Rizky, Avinka Rohmayanti Rohmayanti Sakti, Rangga Sanjaya Septiandani, Zunna Setyadi, Hario Jati Setyawan, Rahmad Setyowati, Agus Tri sila, marsila siswanto, ahmad Siti Masfuah Syamsul Bahri Syaputra, Karlen Tarigan, Phascalis Chevin Vania, Chaelse Wa Ode Rahmadania Yingxiang, Schunk Zuhry, Saifuddin