p-Index From 2020 - 2025
11.318
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering Jurnal Rekayasa Proses Pixel : Jurnal Ilmiah Komputer Grafis Jurnal Pekommas Indonesian Journal of Educational Review (IJER) Journal of Environmental Engineering and Sustainable Technology Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Informatika dan Teknik Elektro Terapan Indonesian Journal on Computing (Indo-JC) Jurnal Inspiration JOIN (Jurnal Online Informatika) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Creative Information Technology Journal JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING JFMR (Journal of Fisheries and Marine Research) INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi JIKO (Jurnal Informatika dan Komputer) Insect (Informatics and Security): Jurnal Teknik Informatika JITK (Jurnal Ilmu Pengetahuan dan Komputer) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Applied Information System and Management Jurnal Rekayasa Proses JURNAL EDUCATION AND DEVELOPMENT MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer J-SAKTI (Jurnal Sains Komputer dan Informatika) Indonesian Journal of Applied Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) CSRID (Computer Science Research and Its Development Journal) Informasi Interaktif Building of Informatics, Technology and Science Progresif: Jurnal Ilmiah Komputer Journal of Sustainable Engineering: Proceedings Series SENSITEK E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi JTIM : Jurnal Teknologi Informasi dan Multimedia bit-Tech Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika Dielektrika : Jurnal Ilmiah Kajian Teori dan Aplikasi Teknik Elektro Respati Journal Cerita: Creative Education of Research in Information Technology and Artificial Informatics G-Tech : Jurnal Teknologi Terapan JIKA (Jurnal Informatika) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) Jurnal Ilmiah Publika Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) Information System Journal (INFOS) Buletin Poltanesa Jurnal Senopati : Sustainability, Ergonomics, Optimization, and Application of Industrial Engineering INFOSYS (INFORMATION SYSTEM) JOURNAL J-SAKTI (Jurnal Sains Komputer dan Informatika) Research Fair Unisri Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Dinamika Informatika (JDI) Jurnal Teknik Informatika Journal of Comprehensive Science Jurnal Indonesia Sosial Teknologi Ceddi Journal of Information System and Technology (JST) SmartComp Teknomatika: Jurnal Informatika dan Komputer JURNAL MULTIDISIPLIN BHATARA
Claim Missing Document
Check
Articles

Implementasi Rigging pada Rambut 3D Askar, Muhammad Ichfan; Setyanto, Arief; Sofyan, Amir Fatah
Inspiration: Jurnal Teknologi Informasi dan Komunikasi Vol 11, No 1 (2021): Jurnal Inspiration Volume 11 Issue 1
Publisher : STMIK AKBA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35585/inspir.v11i1.2623

Abstract

3D animation is an art to be able to create and move 3D objects, so that it can produce amovement in accordance with the wishes of the maker. In making the animation, 3D objet andrigging are needed. The stages of program implementation are: The first stage is an object,where 3D objects choose several types, one of which is always used is a human object. Humanobjects have a high level of difficulty, especially the hair. Each hairdo making chooses adifferent surgical process. The second stage is rigging, regular rigging is likened to ananimation bone that functions to move an animation object. Based on this, this researchdescribes the process of implementing rigging in several 3D hairstyles and basic patterns todetermine the type of hair to be made. The implementation of this model uses a rigging modelapproach between the object and the animator so that it can produce 3D animation works well.
KOMPOSISI SPESIES LARVA LOBSTER YANG TERKUMPUL PADA ATRAKTOR LAMPU BAWAH AIR Setyanto, Arief; Kamila, Firda Nikmatul; Bintoro, Gatut
JFMR (Journal of Fisheries and Marine Research) Vol 4, No 2 (2020): JFMR VOL 4. NO.2
Publisher : JFMR (Journal of Fisheries and Marine Research)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jfmr.2020.004.02.12

Abstract

Lobster (Panulirus sp.) merupakan hewan avertebrata anggota Filum Arthropoda. Di Indonesia terdapat 6 spesies lobster dari genus Panulirus yaitu P. homarus, P. longipes, P. ornatus, P. penicillatus, P. polyphagus dan P. versicolor. Keenam spesies lobster ini memiliki distribusi yang berbeda-beda. Fase hidup lobster sangat komplek. Fase larva adalah relative lama dan mempunyai beberapa tahap yangmana kelulushidupan dalam fase ini sangat menentukan populasi alaminya. Fase larva lobster termasuk dalam plankton yang makanannya tergantung pada jenis mikroorganisme lainnya. Mikroorganisme umumnya adalah phototaksis positive. Studi tentang pengaruh cahaya terhadap komposisi spesies larva lobster menarik dilakukan karena dapat memberikan informasi bagi upaya budidaya dan peningkatan jumlah populasi melalui penurunan kematian alaminya. Penelitian ini di laksanakan di perairan Pantai Lampon, Banyuwangi, Jawa Timur tahun 2019. Pada penelitian ini analisis yang digunakan adalah analisis Chi-Square, uji F (ANOVA), dan uji lanjutan.Hasil dari penelitian ini adalah spesies larva lobster yang terkumpul pada atraktor lampu dan tanpa atraktor ada empat speseis yaitu P. ornatus, P. homarus, P. penicillatus, dan P. versicolor. Spesies yang dominan terkumpul adalah P. homarus. Pada penelitian ini penggunaan atraktor lampu celup bawah air lebih berpengaruh terhadap jumlah larva lobster untuk mendekat kearah atraktor. Keberhasilan pengelolaan sumberdaya perikanan lobster akan sangat ditentukan oleh hasil kajian yang mencakup seluruh siklus hidupnya.
Peningkatan Performa Pendeteksian Anomali Menggunakan Ensemble Learning dan Feature Selection Ripto Sudiyarno; Arief Setyanto; Emha Taufiq Luthfi
Creative Information Technology Journal Vol 7, No 1 (2020): Januari - Juni
Publisher : UNIVERSITAS AMIKOM YOGYAKARTA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/citec.2020v7i1.238

Abstract

Intrusion detection systems (IDS) atau Sistem pendeteksian intrusi dikenal sebagai teknik yang sangat menonjol dan terkemuka untuk menemukan malicious activities pada jaringan komputer, tidak seperti firewall konvensional, IDS berbeda dalam hal pengidentifikasian serangan secara cerdas dengan pendekatan analitik seperti data mining dan teknik machine learning. Dalam beberapa dekade terakhir, ensemble learning sangat memajukan penelitian pada machine learning dan klasifikasi pola, serta menunjukan peningkatan hasil kinerja dibandingkan single classifier. Pada Penelitian ini dilakukan percobaan peningkatan nilai akurasi terhadap sistem pendeteksian anomali, pertama dilakukan klasifikasi menggunakan single classifier untuk didapati hasil nilai akurasi yang nantinya dibandingkan dengan hasil dari ensemble learning dan feature selection. Penggunaan ensemble learning bertujuan untuk mendapatkan nilai akurasi yang terbaik dari single classifier. Hasil didapatkan dari nilai confusion matrix dan akan dilakukan pengujian dengan cara membandingkan nilai kedua metode diatas. Penelitian berhasil mendapatkan nilai akurasi single classifier (naïve bayes) yaitu 77,4% dan nilai ensemble learning 96,8%. Kata Kunci— ensemble learning, nsl-kdd, naïve bayes, anomali, feature selectionIntrusion detection systems (IDS) are known as very prominent and leading techniques for finding malicious activities on computer networks, unlike conventional firewalls, IDS differs in terms of identifying attacks intelligently with analytic approaches such as machine learning techniques. In the last few decades, ensemble learning has greatly advanced research in machine learning and pattern classification it has shown an improve in performance results compared to a single classifier. In this study an attempt was made to increase the accuracy of anomalous detection systems, first by classification using a single classifier to find the results of accuracy which will be compared with the results of ensemble learning and feature selection. The use of ensemble learning aims to get the best accuracy value from a single classifier. The results are obtained from the value of the confusion matrix and will be tested by comparing the values of the two methods above. The research succeeded in getting a single classifier accuracy value of 77,4% and ensemble learning 96,8%. Keywords— ensemble learning, nsl-kdd, naïve bayes, anomali, feature selection
Sistem Klasifikasi Pada Penyakit Breast Cancer Dengan Menggunakan Metode Naïve Bayes Ilham Mubarog; Arief Setyanto; Heri Sismoro
Creative Information Technology Journal Vol 6, No 2 (2019): Juli - Desember
Publisher : UNIVERSITAS AMIKOM YOGYAKARTA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/citec.2019v6i2.246

Abstract

Kanker payudara adalah suatu penyakit pada wanita yang dengan nilai angka kematian yang tinggi, sekitar tahun 2016 penyakit tersebut menyebabkan angkat kematian yang tinggi yaitu 9,3 juta angka kematian didunia. Jumlah wanita yang terkena penyakit payudara sangat banyak, di Indonesia sendiri sekitar 12.900 orang meninggal setiap tahunnya karena kasus kanker payudara. Angka kematian ini meningkat karena kurangnya informasi tentang gejala awal dan bahaya dari kanker payudara itu sendiri, karena kurangnya informasi tersebut maka dibutuhkan sebuah sistem yang dapat memberikan informasi tentang penyakit kanker payudara dan cara penanggulangan seperti diagnose secara dini dan penanganannya. Sistem berbasis komputer yang dapat menyelesaikan masalah tersebut ada sistem klasifikasi, dimana sistem tersebut dapat memberikan informasi dan melakukan diagnosa seperti yang dilakukan oleh klasifikasi. Salah satu metode yang dapat diterapkan dalam sistem klasifikasi adalah naïve bayes, metode ini sangat baik dalam melakukan klasifikasi berdasarkan kejadian sebelumnya. Hasil pengujian Confusion Matrix diperoleh hasil akurasi terbaik sebesar 80% pada jumlah 116 dataset.Kata Kunci— klasifikasi, kanker payudara, naïve bayes.Breast cancer is a disease in women with a high lifting value of death, around 2016 the disease caused a high lifting of death which is 9.3 million lifted deaths in the world. The number of women affected by breast disease is very large, in Indonesia alone the number of 12,900 people dies each year due to cases of breast cancer. This mortality rate increases due to lack of information about the initial symptoms and dangers of breast cancer itself, because of the lack of information, a system is needed that can provide information about breast cancer and how to deal with it such as early diagnosis and control. A computer-based system that can solve this problem has a classification system, where the system can provide information and conduct diagrams as is done by classification, one method that can be applied in a classification system is naïve bayes, this method is very good at conducting classifications based on previous events. Confusion Matrix test results obtained the best accuracy of 80% in the number of 116 datasets.Keywords— classification, breast cancer, naïve bayes.
Kinerja Quagga pada Routing BGP IPv6 Menggunakan Metode Dual Stack Performance of Quagga on BGP IPv6 Routing Using Dual Stack Method Andi Kriswantono; Arief Setyanto; Suwanto Raharjo
Creative Information Technology Journal Vol 5, No 1 (2017): November-Januari
Publisher : UNIVERSITAS AMIKOM YOGYAKARTA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (217.743 KB) | DOI: 10.24076/citec.2017v5i1.141

Abstract

Alamat jaringan yang digunakan saat ini adalah IPv4 (Internet Protocol v4), perkembangan jaringan menuju IoT (Internet of Think) meningkatkan kebutuhan akan alamat IP (Internet Protocol. Solusi terkait masalah IP adalah dengan melakukan migrasi ke alamat IPv6 (Internet Protocol Version 6).Metode transisi IPv4 ke IPv6 menggunakan Dual Stack merupakan metode yang paling baik dan stabil untuk dapat diimplementasikan. Salah satu pertimbangan dari provider penyedia jasa dan jaringan internet dalam melakukan migrasi ke jaringan IPv6 adalah terkait dengan kinerja BGP (Border Gateway Protocol) yang merupakan routing pondasi terbentuknya internet. Hal ini terkait dengan besarnya rute dengan adanya IPv6 yang nantinya mengakibatkan besarnya konsumsi CPU, memori dan lamanya BGP dalam menerima table routing secara penuh (convergence). Salah satu software routing BGP yang popular dan banyak digunakan di jaringan adalah menggunakan Quagga routing. Hasil dari penelitian ini menunjukkan bahwa penggunaan Quagga dalam menangani 10 peer BGP IPv4 dan IPv6 menunjukkan hasil yang baik, router membutuhkan waktu 106,6 second atau kurang lebih 1 menit 7 detik dengan konsumsi CPU maksimal 18,54% dan konsumsi memori 16,45% untuk dapat menerima seluruh table routing.Kata Kunci — Ipv6, Dual Stack, Quagga, BGP routing, convergenceThe current network address is IPv4 (Internet Protocol v4), network development towards IoT (Internet of Think) increases the need for IP addresses (Internet Protocol). The solutions of IP problem are to migrate to IPv6 (Internet Protocol Version 6) addresses. IPv4 to IPv6 transition method using Dual Stack is the best and most stable method to implement. One of the considerations of internet service provider in migrating to IPv6 network is related to BGP (Border Gateway Protocol) performance that is the foundation routing internet connection. This is related to the magnitude of the route with the IPv6 which will result in the amount of CPU consumption, memory and the length of BGP in receiving the full table routing (convergence) One of the popular and widely used BGP routing software on the network is using Quagga routing. The results of this study show that using Quagga in handling 10 BGP IPv4 and IPv6 peers shows good results, the router takes 106.6 seconds or approximately 1 minute 7 seconds with a maximum CPU consumption of 18.54% and memory consumption of 16.45% to be able to accept all routing tables.Keywords— Ipv6, Dual Stack, Quagga, BGP routing, convergence
Algoritma LSTM-CNN untuk Binary Klasifikasi dengan Word2vec pada Media Online Dedi Tri Hermanto; Arief Setyanto; Emha Taufiq Luthfi
Creative Information Technology Journal Vol 8, No 1 (2021): Januari - Juni
Publisher : UNIVERSITAS AMIKOM YOGYAKARTA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/citec.2021v8i1.264

Abstract

Media online banyak menghasilkan berbagai macam berita, baik ekonomi, politik, kesehatan, olahraga atau ilmu pengetahuan. Di antara itu semua, ekonomi adalah salah satu topik menarik untuk dibahas. Ekonomi memiliki dampak langsung kepada warga negara, perusahaan, bahkan pasar tradisional tergantung pada kondisi ekonomi di suatu negara. Sentimen yang terkandung dalam berita dapat mempengaruhi pandangan masyarakat terhadap suatu hal atau kebijakan pemerintah. Topik ekonomi adalah bahasan yang menarik untuk dilakukan penelitian karena memiliki dampak langsung kepada masyarakat Indonesia. Namun, masih sedikit penelitian yang menerapkan metode deep learning yaitu Long Short-Term Memory dan CNN untuk analisis sentimen pada artikel finance di Indonesia. Penelitian ini bertujuan untuk melakukan pengklasifikasian judul berita berbahasa Indonesia berdasarkan sentimen positif, negatif dengan menggunakan metode LSTM, LSTM-CNN, CNN-LSTM. Dataset yang digunakan adalah data judul artikel berbahasa Indonesia yang diambil dari situs Detik Finance. Berdasarkan hasil pengujian memperlihatkan bahwa metode LSTM, LSTM-CNN, CNN-LSTM memiliki hasil akurasi sebesar, 62%, 65% dan 74%.Kata Kunci — LSTM, sentiment analysis, CNNOnline media produce a lot of various kinds of news, be it economics, politics, health, sports or science. Among them, economics is one interesting topic to discuss. The economy has a direct impact on citizens, companies, and even traditional markets depending on the economic conditions in a country. The sentiment contained in the news can influence people's views on a matter or government policy. The topic of economics is an interesting topic for research because it has a direct impact on Indonesian society. However, there are still few studies that apply deep learning methods, namely Long Short-Term Memory and CNN for sentiment analysis on finance articles in Indonesia. This study aims to classify Indonesian news headlines based on positive and negative sentiments using the LSTM, LSTM-CNN, CNN-LSTM methods. The dataset used is data on Indonesian language article titles taken from the Detik Finance website. Based on the test results, it shows that the LSTM, LSTM-CNN, CNN-LSTM methods have an accuracy of, 62%, 65% and 74%.Keywords — LSTM, sentiment analysis, CNN
Systematic Literature Review of Waste Classification Using Machine Learning Astika Wulansari; Arief Setyanto; Emha Taufiq Luthfi
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol 5, No 2 (2022): Issues January 2022
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jite.v5i2.6211

Abstract

The development of the global economy has caused people's living standards to increase and the production of domestic waste has also increased from year to year. The population of big cities that have limited environmental carrying capacity, causing the waste problem requires serious handling. Manual waste sorting is hazardous to health and wastes time, money and effort. If waste is not handled properly, environmental problems will increase in the long run. Machine learning works by combining features such as textures and colors to complement junk image recognition. Today's machine learning technology continues to develop, not only methods, types of waste, and features but also identify and analyze datasets used in waste management by gathering all scientific evidence. Collecting existing research and then identifying, assessing, and interpreting requires a systematic literature review. Until the end of 2021, the research topic of waste classification using machine learning was found with various types of waste, algorithms, datasets, and others. However, the dataset used by the algorithm in image recognition is relatively single, the types of garbage classified and the relative accuracy results can still be improved.
BIOLOGI REPRODUKSI TONGKOL LISONG, Auxis rochei rochei (Risso, 1810) DI PERAIRAN SENDANG BIRU, KABUPATEN MALANG, JAWA TIMUR Arief Setyanto; Dewa Gede Raka Wiadnya; (Menunda Publikasi)
JFMR (Journal of Fisheries and Marine Research) Vol 1, No 1 (2017): JFMR VOL 1 NO 1
Publisher : JFMR (Journal of Fisheries and Marine Research)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The aims of this study are to know some biological  reproductive aspects of bullet tuna. Information of its biological reproductive aspects will be useful for managing the bullet tuna fishery. Determining about gonadal maturity level in fish can be completed by macroscopic and microscopic (histology) observation. The study about gonadal matuity level determination of bullet tuna has been done through histological observation. Sampling was done by taken sample from UPT P2SKP Pondokdadap Sendangbiru, from January until March 2018. Species identification follows the FAO standard procedure (species identification sheet) published 2001. A specimen was deposited at Depository Ichtyologicum Brawijaya with code DIB.FISH.11111 002 03. Forklength of the sampled 82 fish  range from 20,10 – 27,20. Gonadal samples were cut with microtome machine at 5 mm thickness. The preparates were then analyzed using biological binocular microscope at 40x magnification. The result showed that maturity stage of bullet tuna dominated by TKG IV with  34 %, followed by TKG III (31 %), TKG 1 (28 %), TKG II (5 %) and  TKG V (1 %). Lenght at first maturity occured at 23.88 cm and egg diameter were 20,92–367,65 µm.
Analisis Aplikasi Marbel Huruf Versi Mobile Terhadap Pembelajaran Membaca di Desa Semanding Ponorogo Jamilah Karaman; Arief Setyanto; Amir Fatah Sofyan
INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Vol 2 No 2 (2018): Vol. 2 No. 2 Agustus 2018
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (176.797 KB) | DOI: 10.29407/intensif.v2i2.11878

Abstract

The development of technology, especially information and communication technology offers many ease-ease in learning, which allows the shift of learning orientation from the process of presenting various knowledge into the process of guidance in individual exploration of science. Interactive learning media for children who rampant today is a game-based learning pedia is "MARBEL". Marbel is an abbreviation of "Let's Learn", marbel application is an educational application (mobile learning) for children aged 2 to 8 years so that made mobile-based applications aims to facilitate children in the learning process.
Analisis Permodelan Periodic VRP with Driver-Consistency dan Consistency-VRP with Time-Windows Muhammad Reza Riansyah; Arief Setyanto; Eko Pramono
Progresif: Jurnal Ilmiah Komputer Vol 18, No 1: Februari 2022
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (387.398 KB) | DOI: 10.35889/progresif.v18i1.768

Abstract

Abstrak. Sistem distribusi merupakan bagian penting dalam aktivitas pemasaran untuk mempermudah penyampaian barang dan jasa kepada konsumen. Dalam sistem distribusi terdapat komponen-komponen berupa Pelanggan, Kendaraan, Pengemudi, Rute dan Depot yang menjadi tujuan pendistribusian. Dalam menentukan rute terdapat berbagai masalah yang dapat ditemukan yaitu dengan Vehicle Routing Problem (VRP). VRP digunakan untuk menentukan beberapa rute dimana dalam setiap rute dilalui oleh suatu kendaraan yang memulai perjalanan dari depot awal sampai depot akhir dengan permintaan pasti maupun tidak pasti. Penelitian ini di buat untuk membanding model Periodic VRP with Driver-Consistency (PVRP-DC) dan Consistency-VRP with Time-Windows (ConVRP-TW). Hasil penelitian ini menemukan perbedaan yang dihasilkan pada kedua model tersebut yaitu PVRP-DC dan ConVRP-TW dan VRP lainnya memiliki persamaan untuk mencari solusi rute yang optimal dengan batasan-batasan tertentu. Dengan permodelan PVRP-DC dapat menghemat jarak sebesar 25% dan ConVRP-TW dapat menghemat jarak 26%.Kata kunci: Permodelan; Sistem distribusi; Periodic VRP with Driver-Consistency; Consistency-VRP with Time-Windows Abstract. The distribution system is an important part of marketing activities to facilitate the delivery of goods and services to consumers. In the distribution system there are components in the form of Customers, Vehicles, Drivers, Routes and Depots which are the purpose of distribution. In determining the route, there are various problems that can be found, namely the Vehicle Routing Problem (VRP). VRP is used to determine several routes in which each route is traversed by a vehicle starting from the initial depot to the final depot with definite or uncertain requests. This study was made to compare the Periodic VRP with Driver-Consistency (PVRP-DC) and Consistency-VRP with Time-Windows (ConVRP-TW) models. The results of this study found the differences between the two models, namely PVRP-DC and ConVRP-TW and other VRPs have similarities to find the optimal route solution with certain limitations. By modeling PVRP-DC can save distance by 25% and ConVRP-TW can save distance by 26%.Keywords: Modeling; Distribution system; Periodic VRP with Driver-Consistency; Consistency-VRP with Time-Windows
Co-Authors (Menunda Publikasi) Abdillah, M A Agastya, I Made Artha Agung, Kris Agus Sukarno Agus Tumulyadi Agustina Rahmawati Ahmad Afief Amrullah Ahmad Afief Amrullah Ahmad Naufal Labiib Nabhaan Ahmad Tantoni Ainul Yaqin Akhmad Fadjeri Al Maky, Nuril Huda Alva Hendi Muhammad Amanda Rifan Fathoni Amir Fatah Sofyan Amiruddin Khairul Huda Amrullah, Ahmad Afief Anam, M. Choirul Anang Anang Andi Kriswantono Andik Isdianto Anggit Dwi Hartanto Anggit Hartanto annisa gatri zakinah Anthon Andrimida, Anthon Ariefandi, Muhammad Fikri Asadi, M. Arif Askar, Muhammad Ichfan Asmirijal, Amrey Syahnur Asro Nasiri Asro Nasiri Asro Nasiri Astika Wulansari Astuti , Septiana Sri Atmaja, Albertus Aldo Danar Aulia Lanudia Fathah Basit, Muhammad Abdul Béjar, Rodrigo Martínez Berlania Mahardika Putri Constantin Menteng Daduk Setyohadi Darmawan Ockto Sutjipto Dedi Tri Hermanto Dewa Gede Raka Wiadnya Dewa Gede Raka Wiadnya Dewa Gede Raka Wiadnya, Dewa Gede DHANI ARIATMANTO Dhani Ariatmanto Dhea, Luthfia Ayu Dhiana Puspitawati Dian Rusvinasari Dinar Mustofa Dwi Satrio Anurogo Eko Pramono Eko Pramono Eko Pramono Ema Utami Emha Emha Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi F Purwanto Fathah, Aulia Lanudia Fazlul Rahman Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Fiqih Akbari Gatut Bintoro Gibran, Ibrahim El Gibran, Khalil Gunawan Wicahyono Hadin La Ariandi Hadiyah, Lisa Nur Hafidz Sanjaya, Hafidz Hamdikatama, Bimantyoso Hamka Suyuti HANIF AL FATTA Hanif Al Fatta Hanif Al Fatta Hanif Al Fattah Hanifa Ramadhani Hari Susanto Harlyan, Ledhyane Eka Henderi . Heri Sismoro Hidayat, Aji Said Wahyudi Hidayat, Kardilah Rohmat Hizbul Izzi I Made Artha Agastya Ilham Mubarog Imam Syafii Imam Syafii Imam Thoib Irianies Cahya Gozali Irwan Jatmiko Ishaq, Syafrial Yanuar Jamilah Karaman Jimmy H Moedjahedy José Ramón Martínez Salio Kamila, Firda Nikmatul Kartikasari, Wahida Khairan marzuki Khasanah, Nabiila Rizqi Kholida Zia Abidin Komang Aryasa Kris Agung Kudrati, Amelinda Vivian Kumara Ari Yuana Kumoro, Danang Tejo Kurniawan, Mei P Kusnawi Kusnawi KUSRINI Kusrini Kusrini Kusrini, Kusrini López, Alba Puelles M. Diah M. Rudyanto Arief M. RUDYANTO ARIEF M. Rudyanto Arief Madani, Miftahul Maehendrayuga, Arief Mardya Hayati Marsela, Kristina Martiani, Evi Martínez-Béjar, Rodrigo Mei P Kurniawan Mei P. Kurniawan Mei P. Kurniawan Miftahul Madani Mohamad Syafri Lamato Morita Puspita Sari Muammar Reza Pahlawan Muchamad Zainul Muhamad Maksum Hidayat Muhammad Arif Asadi, Muhammad Arif Muhammad Arif Rahman Muhammad Azmi Muhammad Ghozaly Salim Muhammad Javier Irsyad Muhammad Reza Muhammad Reza Riansyah Muhammad Yusuf Munandar, Arief Muqorobin Muqorobin Nabhaan, Ahmad Naufal Labiib Nabilla, Azma Salma Nadea Cipta Laksmita Nasiri, Asro Naufal Hilda Bahtiar nfn Sarip Nggego, Dedy Abdianto Ni Nyoman Utami Januhari, Ni Nyoman Nico Rahman Caesar Nila Feby Puspitasari, Nila Feby Nina Kurnia Hikmawati Nizery, Sefhanissa Puspa Retno Nuddin Harahab Nur Khamidah oktiyas muzaky Luthfi, oktiyas muzaky Pangestu, Wanda Suryani Pattisahusiwa, Annisa Shafira P. Prastyo, Agung Budi Prayoghi, M. Lukman Publikasi), (Menunda Putra, Muhammad Naufal Eka Putri, Berlania Mahardika Rachmanto, Rakandhiya Daanii Rafif Zul Fahmi Rahmad Arif Setiawan Rahman, Aulia Tegar Rahmat Taufik R.L Bau Rakandhiya Daanii Rachmanto Ramdhani, Mohamad Dhicy Rarasrum Dyah Kasitowati Ratno Kustiawan Ria Andriani Ripto Sudiyarno Rismayani Rismayani Roni Sasongko Rudyanto Arief Sadikin, Moh. Fal Samuel, Pratama Diffi San Sudirman Saputra, Tedy Eko Sarah Bunda Desi Bawan Sarip, nfn Seniwati, Erni Shahruri, Rifandi Annas Simone Martin Marotta Siti Alvi Sholikhatin Siti Halimah Soejono, Ajie Wibowo Sriyati Sriyati Stephan Adriansyah Hulukati Suardi, Heri Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan, Sudarmawan Suhardi Aras Sukoco Sunardi Sunardi Supriyadi Supriyadi Supriyadi Supriyadi Suwanto Raharjo Suyadi Suyadi Suyuti, Hamka Syarief, Salsabila Nazmie Putri TONNY HIDAYAT Totok Wahyu Caturiyanto Tri Anton Tri Djoko Lelono Tumulyadi, Agus Tyas, Herlin Widi Aning Utama, Andria Ansri Veithzal Rivai Zainal Wahyu Nugroho Widhiarta, Widhiarta Yasmin, Delviega Aisyah Yorarizka, Putri Devi Yuliana Yuliana Zul Hisyam