p-Index From 2021 - 2026
11.024
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Jurnal Informatika dCartesian: Jurnal Matematika dan Aplikasi Jurnal Masyarakat Informatika JURNAL SISTEM INFORMASI BISNIS Prosiding KOMMIT Jurnal Sistem Komputer Proceedings of KNASTIK Semantik Jurnal Simetris Jurnal Buana Informatika Elkom: Jurnal Elektronika dan Komputer TELKOMNIKA (Telecommunication Computing Electronics and Control) Journal of Education and Learning (EduLearn) Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) JREC (Journal of Electrical and Electronics) JSI: Jurnal Sistem Informasi (E-Journal) Jurnal Ilmiah Kursor Telematika : Jurnal Informatika dan Teknologi Informasi Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Transformatika Jurnas Nasional Teknologi dan Sistem Informasi Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Register: Jurnal Ilmiah Teknologi Sistem Informasi Jurnal Manajemen Kesehatan Indonesia Sistemasi: Jurnal Sistem Informasi Kelola: Jurnal Manajemen Pendidikan Sinkron : Jurnal dan Penelitian Teknik Informatika AdBispreneur Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Computatio : Journal of Computer Science and Information Systems Jurnal Mercumatika : Jurnal Penelitian Matematika dan Pendidikan Matematika INTEGER: Journal of Information Technology Jurnal Penelitian Pendidikan IPA (JPPIPA) Faktor Exacta Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control INOVTEK Polbeng - Seri Informatika BAREKENG: Jurnal Ilmu Matematika dan Terapan Dinamisia: Jurnal Pengabdian Kepada Masyarakat JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI ILKOM Jurnal Ilmiah Jurnal Manajemen Informasi dan Administrasi Kesehatan Jurnal ULTIMA InfoSys Media Mahardhika J-SAKTI (Jurnal Sains Komputer dan Informatika) JUMANJI (Jurnal Masyarakat Informatika Unjani) Jurnal Informatika Kritis Journal of Humanities and Social Studies Infotronik : Jurnal Teknologi Informasi dan Elektronika Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Journal of Information Systems and Informatics Informatika Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Jurnal Mnemonic JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Frontiers Aiti: Jurnal Teknologi Informasi ADI Bisnis Digital Interdisiplin (ABDI Jurnal) Journal of Information Technology Ampera JINAV: Journal of Information and Visualization JOINTER : Journal of Informatics Engineering Walisongo Journal of Information Technology Journal of Information Technology (JIfoTech) Community Medicine and Education Journal J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Teknologi Sistem Informasi Jurnal Nasional Teknik Elektro dan Teknologi Informasi Lensa: Jurnal Kependidikan Fisika Nusantara of Engineering (NOE) TAKSONOMI INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS : Journal of Information System Jurnal Manajemen Sistem Informasi d'Cartesian: Jurnal Matematika dan Aplikasi International Journal of Information Technology and Business INOVTEK Polbeng - Seri Informatika JuTISI (Jurnal Teknik Informatika dan Sistem Informasi)
Claim Missing Document
Check
Articles

Found 27 Documents
Search
Journal : JURNAL SISTEM INFORMASI BISNIS

Pendekatan Metode Pohon Keputusan Menggunakan Algoritma ID3 Untuk Sistem Informasi Pengukuran Kinerja PNS Sidette, Julce Adiana; Eko, Eko; Nurhayati, Oky Dwi
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 4, No 2 (2014): Volume 4 Nomor 2 Tahun 2014
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1049.686 KB) | DOI: 10.21456/vol4iss2pp75-86

Abstract

Decision tree method is a classification method that has been widely used for the solution of problems of classification. Decision tree classification provides a rapid and effective method. The approach has been proven decision tree method can be applied in various fields of life. Capability classification is indicated by the decision tree method is what encourages authors to use decision tree methods approach to measure the performance of civil servants. To build a decision tree induction algorithms used. In this study, the ID3 algorithm method is used to construct a decision tree. Starting with the data collecting training samples and then measuring the entropy and information gain. Information Gain value will be used as the root of a decision tree. And translates it into a decision tree classification rules. The results show that the decision tree method is used to produce classification rules into groups employee performance Good and Bad. The resulting rules are used to measure the performance of employees and classifying employees into two groups above are constructed in an information system. Information system built to assist management in making more objective assessment process.    *) Penulis korespondensi: utje_caem@yahoo.com   Keywords: ID3 Algorithm; Decision tree; Employee performance
Studi Pengamanan Login Pada Sistem Informasi Akademik Menggunakan Otentifikasi One Time Password Berbasisis SMS dengan Hash MD5 Imam Santoso, Kartika; Sediyono, Eko; Suhartono, Suhartono
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 3, No 1 (2013): Volume 3 Nomor 1 Tahun 2013
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1207.166 KB) | DOI: 10.21456/vol3iss1pp07-12

Abstract

Pengamanan login untuk mengakses Sistem Informasi Akademik berbasis WEB, berupa pengamanan menggunakan OTP(One Time Password) yang di bangkitkan dengan Hash MD5 yang menghasilkan sebuah kode lewat SMS untuk otentikasi.Aplikasi OTP menggunakan masukan untuk hash MD5 dari tabel mahasiswa yang diambil adalah field NIM, No telp, danwaktu akses. Hasil dari fungsi hash tersebut menghasilkan 32 digit bilangan hexadesimal, kemudian mengganti denganangka bila ditemukan huruf di dalamnya. Selanjutnya diambil enam digit dari bilangan tersebut. Enam angka tersebut yangdikirimkan sebagai OTP dengan layanan aplikasi Gammu berupa SMS dan juga disimpan dalam tabel. OTP yang dikirimkankepada pengguna akan dicocokkan dengan yang tersimpan dalam tabel untuk mengecek validitasnya. Apabila cocok antaraOTP yang dikirimkan dengan yang tersimpan dalam tabel, maka pengguna baru bisa mengakses Sistem Informasi Akademik(SIAKAD). OTP yang dihasilkan adalah untuk otentifikasi pengamanan akun pengguna SIAKAD setelah Login denganmemasukkan username dan password. Waktu aktif untuk pengamanan login dengan OTP berbasis SMS selama tiga menit,pembatasan tersebut adalah untuk mempersempit waktu hacker untuk menyadap dan menyusup. Selain itu juga sesuai denganuji coba yang telah dilakukan dengan beberapa layanan operator selular di IndonesiaKata kunci : Sistem Informasi Akademik; Login, Hash MD5; One Time Password; SMS; Gammu
Penerapan Cutomer Relationship Management (CRM) Dengan Menggunakan Metode Analytic Network Process (ANP) Pada Perusahaan Ritel Nofiyati, Nofiyati; Sediyono, Eko; Nurhayati, Oky Dwi
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 3, No 3 (2013): Volume 3 Nomor 3 Tahun 2013
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21456/vol3iss3pp

Abstract

Retail industry or retail business is a fast-growing business in the midst of global competition conditions. One strategy to attract more consumers are Customer Relationship Management (CRM). The successful implementation of CRM in the enterprise is influenced by several environmental perspectives, strategies, customers and products / services, processes, participants, infrastructure, and information technology are integrated in the framework of Work System (WS). This research was carried out by applying the method of Multiple Criteria Decision Making (MCDM) that is able to accommodate the outer and inner linkage from multiple nodes / indicators are considered, namely the Analytical Network Process (ANP) to rank the quality of implementation CRM in retail companies and strong influential node / indicator of the best retail among three alternative the consisting of Alfamart, Indomaret and Smesco mart. From the results of application ANP method, obtained the rank quality of implementation CRM in retail companies with first rank is Indomaret the value of 1.0000; and the second is Alfamart with a value 0.9575; and the third is Smesco mart with a value of 0.8034. While node / indicator strong influence on the the best retail is level of chaos, long and short term planning, customer service, system integration, appropriate skills, technical infrastructure, easily of use and accessibility of information.   Keywords: Ritel, Customer Relationship Management (CRM), Analytic Network Process (ANP), Kerangka Work System (WS).
Pemanfaatan Social Network Analysis Untuk Menganalisis Kolaborasi Komunikasi Pada Balai Perikanan Budidaya Laut Ambon Latupeirissa, Ariyanto; Sediyono, Eko; Iriani, Ade
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 9, No 2 (2019): Volume 9 Nomor 2 Tahun 2019
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (833.677 KB) | DOI: 10.21456/vol9iss2pp121-132

Abstract

Marine aquaculture center-Ambon (Balai Perikanan Budidaya Laut/BPBL-Ambon) is a technical implementing unit under supervision of Directorate General of Aquaculture, Ministry of Maritime Affairs and Fisheries, Republic of Indonesia. Based on report of government’s internal control system (Sistem Pengendalian Intern Pemerintah/SPIP) specifically at the third quarter, some crucial organizational disadvantages have been identified in BPBL-Ambon, particularly related to the communication and coordination between divisions and technical staffs. To deal with this problem, there is a need to analyze and map the roles of interactions between employees in social networks. This study aims to analyze the patterns of interaction between staffs in the social networks. In this work, social network analysis (SNA) was used, which is based on formal and informal interactions on BPBL-Ambon, enabling to identify the key actors potentially able to act as alternative actors for information access to facilitate communication. The collection of individual data, as well as formal and informal interactions, was carried out using questionnaire and interview, involving entire population (saturation sampling). The collected data were then filetered and tabulated symmetric matrix, as preliminary steps for analysis following exported. SNA approach focuses on determining degree centrality, closeness centrality, and betweenness centrality. As a result, our experimental data suggested that most divisions alreadyshowed an appreciable collaboration in terms of communication; however, the remaining divisions showed 0 value in terms of their relationship with other divisions. Based on these findings, we could solve the problem through acting the alternative actors having the highest indegree value apart from stakeholders from a division capable of acting as alternative sources of information. The involvement of alternative actors could be a meaningful attempt in order to solve communication and coordination problems present in BPBL-Ambon
Analisis Sentimen Berbasis Ontologi di Level Kalimat untuk Mengukur Persepsi Produk Akbar, Agus Subhan; Sediyono, Eko; Nurhayati, Oky Dwi
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 5, No 2 (2015): Volume 5 Nomor 2 Tahun 2015
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1207.424 KB) | DOI: 10.21456/vol5iss2pp84-97

Abstract

The purpose of this research is to do sentiment analysis on tweets data retrieved using ontology framework and using naïve bayes classifier algorithm for classification process. This study is based on the habits of twitter users who frequently writes opinion, expression, or sentiment on a specific product, especially smartphones. These tweets can be used as a basis for sentiment analysis on a particular product. The method used in this study include the use of ontology framework for tweets retrieval that match the domain of the discussion and the use of naïve bayes classification algorithm for data classification. Classification process carried past the 3 pieces of layer classification to fine tune the final result of classification. Three layers of classification used include buzz/promo classification (classifying tweets into buzz and not-buzz tweets), subjectivity classification (classifying not-buzz tweets into subjective and objective tweets), and sentiment classification (classifying subjective tweets into positive, negative, or neutral tweets). The resulted software can classify tweets with high accuracy. This software was trained and tested with the composition of 25:75, 50:50, 75:25 from sample data and tested 10 times for each composition. Average accuracy of the system reached 84.16%, 86.15%, and 87.54% for each composition. The result showed that by employing this system, product marketing stakeholders can determine the level of user sentiment expressed in the form of tweets. The method used in this study could be developed to improve the accuracy of classification systems.  
Perbandingan Algoritma Enkripsi GGHN(8,8) dan RC4 Untuk Video Conference Satriyo, Satriyo; Sediyono, Eko; Fatchurrohim, Adian
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 1, No 1 (2011): Volume 1 Nomor 1 Tahun 2011
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21456/vol1iss1pp27-32

Abstract

Encryption is a solutions to secure the information transmitted through the medium of communication that can not be intercepted by unauthorized parties. This study implemented two algorithms i.e. RC4 and GGHN (8.8) in video conference. This study compared the speed  of  both  encryption  and  decryption  of  the  encryption  algorithm,  and  perform  measurements  of  bandwidth .  From  the  results  of measurements of the speed can be concluded that the RC4 algorithm is 1.53 times and 1.34 times faster than GGHN(8,8) for encryption and  decryption  audio  data.  The  encryption  and  decryption  video  data  RC4  are  1.44  times  and  1.09  times  faster  than  GHN(8,8). Bandwidth  usage  for  video  conferencing  without  encryption  and  bandwidth  usage  on  a  video  conference  with  RC4  encryption  and GGHN (8.8) is the same.Keywords: Video Conference; RC4; GGHN(8,8); Real Time Protocol.
Studi Implementasi Adaptive Neuro Fuzzy Inference System Untuk Menentukan Normalitas Kehamilan Rusdiana, Lili; Sediyono, Eko; Surarso, Bayu
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 5, No 2 (2015): Volume 5 Nomor 2 Tahun 2015
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1004.245 KB) | DOI: 10.21456/vol5iss2pp98-108

Abstract

Early detection of normality pregnancy is one of the ways to prevent more serious disorders in pregnancy. This thesis study the implementation of Adaptive Neuro Fuzzy Inference System (ANFIS) to determine the normality of pregnancy. The period of pregnancy and complaints during pregnancy are used as inputs and the normality of pregnancy as output. Data were analyzed using ANFIS method and using Sugeno FIS rules. The program simulation results show that the performance of ANFIS can be implemented to determine the normality of pregnancy. The learning results on different training with the highest level of accuracy of 77,5% can recognize the symptoms and 97.5% could identify the diagnosis to determine the normality of pregnancy. The system can provide the necessary information about the normality of pregnancy. The results show that ANFIS can be used to determine the normality of pregnancy.  
Perbandingan Kinerja Jaringan Saraf Tiruan Model Backpropagation dan General Regression Neural Network Untuk Mengidentifikasi Jenis Daging Sapi Nugroho, Nugroho; Sediyono, Eko; Suhartono, Suhartono
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 1, No 1 (2011): Volume 1 Nomor 1 Tahun 2011
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (645.868 KB) | DOI: 10.21456/vol1iss1pp33-40

Abstract

The research on image identification has been conducted to identify the type of beef. The research is aimed to compare the performance of  artificial  neural  network  of  backpropagation  and  general  regression  neural  network  model  in  identifying  the  type  of  meat.  Image management is processed by counting R, G and B value in every meat image, and normalization process is then carried out by obtaining R, G, and B index value which is then converted from RGB model to HSI model to obtain the value of hue, saturation and intensity. The resulting value of image processing will be used as input parameter of training and validation programs. The performance of  G RNN model is more accurate than the backpropagation with accuracy ratio by 51%.Keyword: Identification; Backpropagation; GRNN
Perbandingan Kinerja Jaringan Saraf Tiruan Model Backpropagation dan General Regression Neural Network Untuk Mengidentifikasi Jenis Daging Sapi Nugroho, Nugroho; Sediyono, Eko; Suhartono, Suhartono
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 1, No 1 (2011): Volume 1 Nomor 1 Tahun 2011
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (645.868 KB) | DOI: 10.21456/vol1iss1pp33-40

Abstract

The research on image identification has been conducted to identify the type of beef. The research is aimed to compare the performance of  artificial  neural  network  of  backpropagation  and  general  regression  neural  network  model  in  identifying  the  type  of  meat.  Image management is processed by counting R, G and B value in every meat image, and normalization process is then carried out by obtaining R, G, and B index value which is then converted from RGB model to HSI model to obtain the value of hue, saturation and intensity. The resulting value of image processing will be used as input parameter of training and validation programs. The performance of  G RNN model is more accurate than the backpropagation with accuracy ratio by 51%.Keyword: Identification; Backpropagation; GRNN
Perbandingan Kinerja Jaringan Saraf Tiruan Model Backpropagation dan General Regression Neural Network Untuk Mengidentifikasi Jenis Daging Sapi Nugroho, Nugroho; Sediyono, Eko; Suhartono, Suhartono
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 1, No 1 (2011): Volume 1 Nomor 1 Tahun 2011
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (645.868 KB) | DOI: 10.21456/vol1iss1pp33-40

Abstract

The research on image identification has been conducted to identify the type of beef. The research is aimed to compare the performance of  artificial  neural  network  of  backpropagation  and  general  regression  neural  network  model  in  identifying  the  type  of  meat.  Image management is processed by counting R, G and B value in every meat image, and normalization process is then carried out by obtaining R, G, and B index value which is then converted from RGB model to HSI model to obtain the value of hue, saturation and intensity. The resulting value of image processing will be used as input parameter of training and validation programs. The performance of  G RNN model is more accurate than the backpropagation with accuracy ratio by 51%.Keyword: Identification; Backpropagation; GRNN
Co-Authors Ade Iriani Adenia Kusuma Dayanthi Adi Setiawan Adi Setiawan Adian Fatchurrohim Adila Safitri Adiyono, Soni Agus Priyadi Agus Subhan Akbar, Agus Subhan Agustinus Raharjo Ahmad Nuzulia Rahman Ahmad Zamsuri, Ahmad Aldian Umbu Tamu Ama Aldian Umbu Tamu Ama Aldri Frinaldi Alvianto, Muhammad Nur Hendra Anak Agung Gede Sugianthara Andi Kristanto Andika, Awan Pijar Andry Ananda Putra Tanggu Mara Andry Tanggu Mara Angela Atik Setiyanti Anna Simatauw Anthony Anthony Antonius Oko Pranoto Anwar S Ardjo Anwar S. Ardjo Anwar S. Ardjo, Anwar S. April Lia Hananto Ardaneswari, Awanda Ardjo, Anwar S Arief Andriono Arief Andriono, Arief Ariel Kristianto Aries Dwi Indriyanti, Aries Dwi Arif Darmawan Aris Puji Widodo Aris Puji Widodo Aris Puji Widodo Aris Puji Widodo Aris Puji Widodo Aris Puji Widodo Aris Puji Widodo Atik Mawarni Aulia Oktaviana Avin Wimar Budyastomo Aviv Yuniar Rahman Awanda Ardaneswari Batawi, Rymond N. Bayu Surarso Brian Laurensz Brilliananta Radix Dewana Budhi Kristianto Cahya Tri Purnami Cahyaningtyas, Christian Catur Edi Widodo Chrisanty Mariana Rorimpandey Christanto, Henoch Juli Christian Lilik HS Nivak Dahur, Arnoldus Janssen Damayanti, Elok Daniel HF Manongga Daniel Riano Kaparang Danny Manongga Danny Sebastian David Setia Darmawan Defitroh Chen Sami'un Devianto, Yudo Dewana, Brilliananta Radix Dharmaputra Palekahelu Dian Puspitadewi Kristyaningtyas Dinda Ayu Aprilia Dio Febrilian Tanjung Doni Wiryadinata Dwi Adityas Rarasati Dwi Mustika Kusumawardani, Dwi Mustika Dwi Setiawan Edna Maria, Edna Edwanda Arisandy Eko Nur Hermansyah Esti Zakia Darojat Evi Maria Faidul Jihad, Fikri Faqih, Haikal Farid Farid Agushybana Feibe Lawalata Ferdian Aditya Pratama Fian Yulio Santoso Fikri Faidul Jihad Fikri Faidul Jihad Firdaus Dwi Prasetyo Firdaus Dwi Prasetyo, Firdaus Dwi Fitra Nur Asri, Muh Florentina Tatrin Kurniati Gatot Sasongko Gilang Muhamad Noer Gregorius Anung Hanindito Gudiato, Candra Haidar Shiddiqramzy Haikal Haikal Haikal Haikal Haikal Nur Rachmanrachim Achaqie Haikal Nur Rachmanrachim Achaqie Hakim, M. Iman Nur Hanif Prasetyo bhakti Adi Nugroho Hany Makaruku, Yulian haryo kusumo Hendry Hertanto Mulianto Hery Santono Hetharie, Renee Yosua Hindriyanto Dwi Purnomo Huda, Baenil Humami, Faris Ilham Akbar Sodik Illyin Almeito Imaniar Sevtiyani Irwan Sembiring Iwan Setyawan Jemaictry Tamaela Johan Jimmy Carter Tambotoh Julce Adiana Sidette, Julce Adiana Jutono Gondohanindijo Juwita Artanti Kusumaningtyas Kartika Imam Santoso Kevin Mikhail Tulenan Kiswanto Kiswanto Kristoko Dwi Hartomo Kristyaningtyas, Dian P. Kuncoro, Wreda Agung Kusumaningtyas, Juwita Artanti Laksamana Rajendra Haidar Latupeirissa, Ariyanto Lawalata, Feibe Lawang, Robert M.Z. Leo Candra Gunawan Wicaksono Leonardo Refialy Leonardo Refialy, Leonardo Lili Rusdiana, Lili M., Maria Magdalena Maipauw, Musa Marsel Malioy, Rimes Jopmorestho Manongga, Daniel HF Maria Magdalena Martini Martini Martza Merry Swastikasari MARWATA, MARWATA Matheus Supriyanto Rumetna Mayestika, Anastasia Kezia Beatrix Melissa Modok Merrryana Lestari Merryana Lestari Michael Elyas Ernawan Moh. Hasyimi Muay, Nikson Theys Muhammad Ikhsan Muhammad Nur Hendra Alvianto N.A. Miftahul Huda N.A. Miftahul Huda, N.A. Miftahul Nabiel Putra Adam Nabiel Putra Adam, Nabiel Putra Ni’mah Akbar Habibie Nofiyati Nofiyati, Nofiyati Nurjazuli Nurjazuli Nurjazuli Nuzhah Al Waaidhoh Oky Dwi Nurhayati Onesimus Joumaran Usior P Purwanto P, Sri Yulianto Joko Panja, Eben Paryono, Tukino Penison Wenda Perdana, Adam Bagus Ponco Yuniarto Pranoto, Antonius Oko Pratama, Ferdian Aditya Pratindy, Raka Prisilia Talakua Priyadi Priyadi Purnama Harahap, Eka Pusaka, Semerdanta Putri Gloria Qurotul Aini Rachardian, Seprima Raden Mohamad Herdian Bhakti Rahmat Gernowo Rahmatika, Yuni Ramanda, Febri Renee Yosua Hetharie Reni Murnita Retno Setya Anggraeni Richi Eka Yanti Rohmad Abidin Romadhon, Zainur Romauli Basaria Romy Aziz Risaldi Ronny Julians, Adhe Roy Rudolf Huizen Ryo Pambudi Saian, Septovan Dwi Suputra Santoso, Fian Yulio Santoso, Nuke Puji Lestari Satriyo Satriyo Sausan Hidayah Nova Sekarlangit Sekarlangit Septovan Dwi Suputra Saian Setiawan, Santo Sholikin, Muhammad Siti Shofiah Slamet Widodo Sodik, Ilham Akbar Solly Aryza Sri Achadi Nugraheni Sri Ngudi Wahyuni, Sri Ngudi Sri Yulianto Sri Yulianto Joko P Sri Yulianto Joko Prasetyo Stephen Aprius Sutresno, Stephen Aprius Suci Larasati Suhartono Suhartono Suharyadi Surarso Bayu Susanti, Novita Dewi Swastikasari, Martza Merry Talakua, Prisilia Tamaela, Jemaictry Teguh Wahyono Theo Pradikta Theofani, Gracia Tintien Koerniawati Tirsa Ninia Lina Tjokra, Cindy Vanesya Tri Wahyuningsih Trisna Wonda Trisna Wonda, Trisna Tulenan, Kevin Mikhail Tundjung Mahatma Untung Rahardja Viera Juniver Thenu Vina Chovan Epifania Wardoyono, Hengky Wicaksono, Januar Agung Widi, Anugerah Yakobus Kevin Dean Prasetyo Yayi Suryo Prabandari Yerik Afrianto Singgalen Yessica Nataliani Yonathan Saputra Yulian Hany Makaruku Yuliarman Saragih Zainal Arifin Hasibuan Zati Hulwani Zati, Hulwani Zukhruf, Afriza Meigi