Articles
Analisis Perbandingan Metode Decision Tree Dan K-Nearest Neighbor Untuk Klasifikasi Cyberbullying Pada Sosial Media Twitter
Maradona, Maradona;
Kusrini, Kusrini;
Alva Hendi Muhammad
METIK JURNAL Vol 7 No 2 (2023): METIK Jurnal
Publisher : LPPM Universitas Mulia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.47002/metik.v7i2.591
This research focuses on analyzing the impact of social media on society, particularly addressing the issue of cyberbullying on the Twitter platform. Based on statistics, the majority of internet users in Indonesia actively utilize social networks, with Twitter being the most dominant platform used for communication and interaction. Therefore, cyberbullying cases often occur on this social media platform. In this study, two classification methods, namely Decision Tree and K-Nearest Neighbor (KNN), were employed to classify cyberbullying-related messages on Twitter. The aim of this research is to compare the performance of these two methods and to identify early signs of cyberbullying as relevant digital evidence for legal proceedings. The dataset used in this study consists of 650 comment records from the period 2019 to 2021, with predefined labels. The analysis results indicate that K-Nearest Neighbor achieved the highest accuracy, reaching 75.99%, compared to Decision Tree with 65.00%. Hence, K-Nearest Neighbor is considered a more effective method for cyberbullying analysis on the Twitter platform. Additionally, the identification of early signs of cyberbullying in comment id 2 can serve as relevant digital evidence for legal purposes. This research provides better insights into the effectiveness of classification in addressing cyberbullying issues on the Twitter platform.
Comparing text classification algorithms with n-grams for mediation prediction
Lewu, Retzi Y.;
Kusrini, Kusrini;
Yaqin, Ainul
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 18, No 2 (2024): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/ijccs.93929
Tingkat keberhasilan mediasi perkara perdata di pengadilan negeri dari tahun ke tahun sangat rendah dan menyebabkan penumpukan perkara yang harus ditangani dengan persidangan. Sementara itu, pendaftaran perkara baru dengan klasifikasi perkara serupa terus bermunculan dan wajib dimediasi. Penelitian ini dilakukan dengan memanfaatkan data mediasi perkara terdahulu sebagai dataset untuk memprediksi hasil mediasi perkara baru. Ketika n-gram digunakan pada dataset yang telah di-preprocessing, hanya ditemukan nilai pada unigram (n=1). Pada penerapan model menggunakan algoritma machine learning, dihasilkan akurasi yang sama sebesar 0.6875 pada Algoritma Naïve Bayes, Logistic Regression dan Support Vector Machine (SVM), sedangkan algoritma Decision tree menghasilkan akurasi paling rendah sebesar 0,375. Rendahnya nilai dikarenakan Decision Tree lebih cenderung overfit untuk digunakan dengan teks berbahasa Indonesia. Pola kalimat formal pada dokumen mediasi berbahasa Indonesia tidak memenuhi unsur – unsur kata majemuk, imbuhan, variasi susunan kata, dan semantik leksikal. Untuk penelitian selanjutnya direkomendasikan penggunaan algoritma klasifikasi lain, pemanfaataannya pada dokumen – dokumen lain seperti putusan pengadilan, penentuan rangking mediator berdasarkan keberhasilan mediasi serta implementasi model pada aplikasi e-mediasi yang terintegrasi dengan sistem informasi manajemen perkara
Strategi Komunikasi Word Of Mouth (WOM) Sebagai Upaya Promosi SDIT ALAM BIRUNI
Kusrini, Kusrini
Jurnal Ilmu Komunikasi Vol 4 No 1 (2021): Studia Komunika: Jurnal Ilmu Komunikasi
Publisher : Pahlawan 12 Press
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.47995/jik.v4i1.43
Penelian ini bertujuan untuk mengetahui strategi komunikasi WOM sebagai upaya promosi SDIT Alam Biruni, di samping juga untuk mengetahui apakah strategi komunikasi WOM yang terjadi di kalangan para orangtua murid adalah ndakan “alami” atau sudah diatur (seng). Penelian ini adalah penelian kualitaf dengan metode deskripf. Teknik pengumpulan data yang digunakan adalah wawancara, observasi, dan dokumentasi. Hasil penelian menunjukkan bahwa strategi komunikasi WOM dapat digunakan sebagai upaya promosi SDIT Alam Biruni dalam menyebarkan informasi penerimaan siswa baru dengan melibatkan semua guru dan pegawai. Selain itu, komunikasi WOM yang terjadi di kalangan orang tua murid SDIT Alam Biruni sudah diatur (seng) oleh pihak sekolah. Adanya program unggulan yang menjadi ciri khas sekolah, merupakan daya tarik untuk disebarluaskan oleh pengguna jasa untuk dibicarakan ke calon pengguna jasa.
Gold Price Prediction Using the ARIMA and LSTM Models
Madhika, Yudha Randa;
Kusrini, Kusrini;
Hidayat, Tonny
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 3 (2023): Article Research Volume 7 Issue 3, July 2023
Publisher : Politeknik Ganesha Medan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33395/sinkron.v8i3.12461
For some investors who are interested in investing for the long term, gold is one of the promising options because the price of gold has recently continued to increase. In the current condition, gold investors generally use instinct and guesswork in investing in gold because there is a benchmark gold price based on world market prices. Many empirical studies identify factors that affect gold prices to forecast them. Factual and econometric analysis recommend different informative factors. This study investigates the influence of gold prices and five supporting variables in the form of economic indicators, namely crude oil price, federal funds effective rate, consumer price index, effective exchange rate and S&P 500 stock market index between 2002 and 2022. Models were built using ARIMA and LSTM methods, evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE). With a dataset allocation of 80% for training data and 20% for testing data, the comparison of actual gold prices with the predicted values of each model shows that LSTM has the best performance compared to the ARIMA (0,1,1) model where the LSTM model has an RMSE value of 8.124 and a MAPE value of 0.023. The models also show that economic indicators affect the ounce price of gold.
Comparison of LSTM and GRU Models for Forex Prediction
Pahlevi, Mohammad Rezza;
Kusrini, Kusrini;
Hidayat, Tonny
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33395/sinkron.v8i4.12709
Trading foreign currencies worth trillions of dollars takes place daily in the forex market, characterized by highly volatile movements. The forex market operates on bid and ask prices, with exchange rates determined by the principles of supply and demand. Trading involves currency pairs like EUR/USD, where the value of the Euro is compared to the US Dollar, serving as a basis for analyzing price fluctuations. Due to the volatile nature of forex, market participants must make informed decisions when buying and selling, as improper choices can result in financial losses. One approach to mitigating risk in forex trading decisions is through the use of forecasting techniques. This research study employs LSTM and GRU methods to predict forex trends, which are evaluated using various dataset divisions. The most accurate results are obtained using a dataset of 4979, split into three equal parts: 80% for training, 10% for validation, and 10% for testing. This approach yields an RMSE value of 0.054, MAPE of 0.037, and R-square of 97%
Analyzing Public Sentiment Regarding the Qatar 2023 World Cup Debate Using TF-IDF and K-Nearest Neighbor Weighting
Olajuwon, Sayyid Muh. Raziq;
Kusrini, Kusrini;
Kusnawi , Kusnawi
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33395/sinkron.v8i2.13275
This research aims to uncover the sentiment of Twitter users regarding the polemics surrounding the 2023 Qatar World Cup using a text-based sentiment analysis approach. The research methodology involves collecting data from Twitter posts, encompassing discussions, opinions, and responses related to the Qatar World Cup 2023. The TF-IDF weighting is applied to identify significant keywords in each post, while the K-Nearest Neighbor algorithm is employed to classify sentiments as positive, negative, or neutral. The findings reveal a comprehensive picture of how the public perceives the Qatar World Cup 2023 on the Twitter platform. The results not only cover positive and negative aspects of online discussions but also identify trends and patterns of sentiment that emerge during specific periods.The application of these methods provides valuable insights into understanding the dynamics of public opinion related to international sports events through the lens of social media. The results of the analysis demonstrate that a majority of Twitter users express positive sentiments towards the Qatar World Cup 2023, highlighting excitement and anticipation. However, some negative sentiments also arise, primarily related to controversies and concerns about the event. The research further identifies temporal variations in sentiment, reflecting changing public perceptions over time.This research contributes to the development of sentiment analysis methods by using a combination of TF-IDF weighting and the K-Nearest Neighbor algorithm to delve into Twitter users' perspectives. Consequently, the findings have practical applicability for further research and implementation in managing the social impact and public perception of major sporting events like the World Cup. .
Optimizing Facial Expression Recognition with Image Augmentation Techniques: VGG19 Approach on FERC Dataset
Ilmawati, Fahma Inti;
Kusrini, Kusrini;
Hidayat, Tonny
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33395/sinkron.v8i2.13507
In the field of facial expression recognition (FER), the availability of balanced and representative datasets is key to success in training accurate models. However, Facial Expression Recognition Challenge (FERC) datasets often face the challenge of class imbalance, where some facial expressions have a much smaller number of samples compared to others. This issue can result in biased and unsatisfactory model performance, especially in recognizing less common facial expressions. Data augmentation techniques are becoming an important strategy as they can expand the dataset by creating new variations of existing samples, thus increasing the variety and diversity of the data. Data augmentation can be used to increase the number of samples for less common facial expression classes, thus improving the model's ability to recognize and understand diverse facial expressions. The augmentation results are then combined with balancing techniques such as SMOTE coupled with undersampling to improve model performance. In this study, VGG19 is used to support better model performance. This will provide valuable guidelines for optimizing more advanced CNN models in the future and may encourage further research in creating more innovative augmentation techniques.
Classification of types Roasted Coffee Beans using Convolutional Neural Network Method
Metha, Halifa Sekar;
Kusrini, Kusrini;
Ariatmanto, Dhani
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33395/sinkron.v8i2.13517
In the current digital era, the role of technology in the agricultural industry is very necessary to increase yields which can have an impact on the productivity and welfare of farmers. Coffee is a drink that has been very popular for many years. Due to the high demand for coffee beans, this research aims to develop a system that can classify types of roasted coffee beans based on images using the Convolution Neural Network (CNN) method. Coffee bean processing is the most important stage in the coffee industry, classifying coffee beans often requires more in-depth knowledge and extensive experience regarding coffee beans. Therefore, this system can be a more effective solution. The author collects a dataset containing types of roasted coffee beans, then the Convolutional Neural Network (CNN) can analyze in the form of visual patterns each type of coffee bean. This implementation is expected to help the coffee industry identify coffee beans quickly and accurately.
Prediksi Kepribadian Berdasarkan Status Sosial Media Facebook Menggunakan Metode Naive Bayes dan KNN
Oktafiqurahman, Andi;
Kusrini, Kusrini;
Nasiri, Asro
Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN) Vol 11, No 2 (2023): Jurnal Tikomsin, Vol. 11, No. 2, Oktober 2023
Publisher : STMIK Sinar Nusantara
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.30646/tikomsin.v11i2.747
Media sosial sekarang hampir menjadi bagian hidup semua orang dari hampir semua kalangan umur dengan beragam kepribadian. Penelitian ini dilakukan untuk memprediksi kepribadian seseorang berdasarkan status media sosial media facebook menggunakan algoritma Naïve Bayes dan K-NN kepribadian yang berdasarkan lima besar. Data yang di ambil dari MyPersonality yang dibagi menjadi 2 yaitu 40% data latih, dan 60% data uji menghasilkan tingkat akurasi sebesar 100%, precision 100%, Recall 100% dapat disimpulkan bahwa variabel prediksi yang (Signifikan) dengan metode Naive Bayes . Sedangkan prediksi menggunakan metode KKNmenunjukkan rata-rata nilai prediksi kepribadian dengan akurasi 58,96% (Tidak signifikan), presisi 99,12% (Signifikan), dan recall 2,34% (Tidak signifikan).
IMPLEMENTASI ALGORITMA BI-LSTM DALAM MENDETEKSI ENTITAS WAKTU DAN LOKASI KEBAKARAN HUTAN
Dzulhijjah, Dwi Ahmad;
Kusrini, Kusrini;
Ari Yuana, Kumara
Jurnal Mnemonic Vol 6 No 2 (2023): Mnemonic Vol. 6 No. 2
Publisher : Teknik Informatika, Institut Teknologi Nasional malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.36040/mnemonic.v6i2.8134
Penelitian ini berfokus pada penerapan algoritma Bidirectional Long Short-Term Memory (Bi-LSTM) untuk identifikasi entitas waktu dan lokasi dalam konteks kebakaran hutan menggunakan teks berbahasa Indonesia. Melalui eksperimen, model dievaluasi dengan mengukur akurasi dan loss, khususnya terkait data teks yang berkaitan dengan kebakaran hutan. Hasil penelitian menunjukkan peningkatan kinerja model selama proses pelatihan, dengan mencapai tingkat akurasi tertinggi pada 75.2% pada epoch terakhir. Kurva loss menunjukkan penurunan yang konsisten hingga mencapai nilai minimum pada 0.801. Evaluasi model pada data uji menghasilkan nilai loss sebesar 0.8750 dan akurasi sebesar 70.49%. Temuan ini menegaskan efektivitas model dalam mendeteksi entitas waktu dan lokasi kebakaran hutan, memberikan kontribusi signifikan pada pengembangan teknologi deteksi dini bencana alam, terutama dalam konteks kebakaran hutan di Indonesia.