This Author published in this journals
All Journal International Journal of Informatics and Communication Technology (IJ-ICT) ELKHA : Jurnal Teknik Elektro Journal The Winners Agora Jurnal Promosi Pendidikan Ekonomi Jurnal Informatika dan Teknik Elektro Terapan Equilibrium Jurnal Komunikasi Forum Ekonomi : Jurnal Ekonomi, Manajemen dan Akuntansi Indonesian Journal of Rheumatology SEIKO : Journal of Management & Business JURIKOM (Jurnal Riset Komputer) Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship Ekonomi dan Bisnis Jurnal Biomedika dan Kesehatan Jusikom: Jurnal Sistem Informasi Ilmu Komputer Prosiding Temu Profesi Tahunan PERHAPI Syntax Idea Prosiding National Conference for Community Service Project STUDI PELAKSANAAN SELFMEDICATION PADA PENDERITA DIARE BERDASARKAN TINGKAT PENGETAHUAN MASYARAKAT PESISIR KECAMATAN SOROPIA KABUPATEN KONAWE Jurnal Sains, Teknologi, Urban, Perancangan, Arsitektur (Stupa) Industrika : Jurnal Ilmiah Teknik Industri Da'watuna: Journal of Communication and Islamic Broadcasting Implementasi Manajemen & Kewirausahaan Journal Of World Science eCo-Fin Jurnal Locus Penelitian dan Pengabdian Makara Journal of Technology Edunity: Kajian Ilmu Sosial dan Pendidikan Publikasi Riset Mahasiswa Manajemen Jurnal Ilmiah MEA (Manajemen, Ekonomi, dan Akuntansi) Journal of Business Studies and Management Review Journal Community Service Consortium Jurnal Hukum dan HAM Wara Sains Social Engagement: Jurnal Pengabdian Kepada Masyarakat J-Sil (Jurnal Teknik Sipil dan Lingkungan) Journal of Health Education Law Information and Humanities
Claim Missing Document
Check
Articles

Predicting AI Job Salary Classes Through a Comparative Study of Machine Learning Algorithms Vincent, Vincent; Robet, Robet; Edi Wijaya
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 6 (2025): Desember 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i6.8979

Abstract

The rapid growth of Artificial Intelligence (AI) has brought significant transformation to the global job market, particularly in salary structures across various AI-related professions. This study aims to classify AI job salaries into three categories—Low, Medium, and High—using supervised machine learning algorithms. The dataset, sourced from Kaggle, combines two real-world datasets featuring key attributes such as experience level, job type, education level, technical skills, remote work ratio, and salary in USD. Preprocessing techniques include One-Hot Encoding for categorical data, StandardScaler for normalization, and MultiLabelBinarizer to handle multi-skill entries. Four machine learning models—Logistic Regression, Random Forest, Gradient Boosting, and XGBoost—were trained and evaluated using consistent pipelines, with evaluation metrics including accuracy, precision, recall, and F1-score, applying macro-averaging to address class imbalance. Logistic Regression achieved the highest performance with 85.4% accuracy and 77.6% F1-score, followed by Gradient Boosting with 84.8% accuracy and 76.3% F1-score. High-salary classes were predicted with higher precision and recall than low-salary classes, indicating skewness in class distribution. Feature importance analysis shows that experience, remote work ratio, and key skills such as Python and SQL significantly affect prediction accuracy. This study demonstrates that traditional machine learning methods, when applied with appropriate preprocessing, can effectively support salary classification and labor market analysis in the AI domain.
PENGARUH KUALITAS INFORMASI DAN TEKNOLOGI INFORMASI TERHADAP KINERJA RANTAI PASOK MELALUI PENERAPAN PEMBAGIAN INFORMASI Vincent, Vincent; Laulita, Nasar Buntu
Journal of Business Studies and Management Review Vol. 9 No. 1 (2025): JBSMR, Vol 9 No.1 December 2025
Publisher : Management Department, Faculty of Economics and Business, Universitas Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22437/jbsmr.v9i1.51953

Abstract

In this study, technological advances have encouraged the use of AI-based systems to facilitate various activities. This study examines how AI can simplify a company's work and help solve problems related to supply chain performance, thereby improving company performance with the support of information quality, information technology, and information sharing, which helps the smooth running of the supply chain for the advancement of the company. This research facilitates the identification of key problems and their effective and efficient resolution for issues that arise in companies. This research uses quantitative data obtained from a survey of the community in the city of Batam. The results obtained from the survey show that AI can simplify various aspects for companies. The results of the study show that the influence of information quality and information technology on supply chain performance through the application of information sharing has a significant effect. This study shows that using current technology can improve company performance. For current developments, the most important thing for companies is to utilize AI for technological advancement at this time.
Co-Authors Abubakar, Farrel Reyhansyah agustin, isnaini nuzula Aisha, Najwa Shanaya Al Karan Caniago, Khafidh Alexios, Constantine Amalia Dwi Cahyani Andika, Ilham Angel Angel Angelina, Clara Lavita Angeline angeline Anjelica, Anjelica Apriandi, Apriandi Ariawan Gunadi Aries Alpendri Arkananta, Muhammad Radhitya Baihaqi, Muhammad Yeza Candy, Candy Chandika, Wilkinson Chatarina Umbul Wahyuni Chen, Chin Fong Chintya, Ora Christiarini, Renny David Sutanto Dewi, Sumartini Dyah Budiastuti Edi Wijaya Ellen Ellen Erryson, Davin Eryc, Eryc Eveline, Christina Fathul Jannah, Fathul Fitriano, Andre Glaudira, Nadya Hafsa, Zhilla Syauqina Hakim, Thaufiq Ar Halawa, Edmun Handayani, Melia Helen, Helen Hendru, Hendru Hermawan, Surya Herwin Herwin, Herwin Hesniati, Hesniati Hummerson, Laureen Aurora Husin, Denny Indasari Deu Itaar, Israel Gabriel Jasmine, Florentina Joni Welman Simatupang Julianti, Selly Kelvin Kelvin Keni Keni Kennedy, Winson Kristina Kristina Laulita, Nasar Buntu Lim, Nicholas Lunda, Axel Nathanael M.G.L, Deborah Maduma Sari Sagala Maharany, Maharany Manalu, Yohana Gusvita Megawati - Mikha, Mikha Monica Meyer, Sharon Moody Rizqy Syailendra Putra Mota, Rafael Alfredo Munajat, Muhammad Nainggolan, Jusup Aprillius Ng, Octarianto Lika Ngayomi Yudha Wastuti, Sri Ningsih, Vivian Febri Noviana Noviana Pancasakti, Bima Prasetya Pangaribuan, Christian Haposan Panggabean, Maya Sabirina Pranata, Catri Wirya Pranata, M. Yuda Purnama, Irwan Rachmadhani, Andi Intan Rachmat Gunadi Wachjudi Rahmadhani, Gina Raiis, Daffa Dzaki Ramadani, Naila Ramadhanis, Zainab Riza, Rivan Robet Robet Rospawan, Ali Rubby Rahman Tsani Samsuri, Faisal Selfia Alke Mega, Selfia Alke Setiawan, Ericks Setiyadi, Surawan Shereen, Shereen Sherlly, Sherlly Sri Hartini Supriadi, Latif Sutoyo Sutoyo Tanaka, Valencia Teoh, Ai Ping Tjan, Charles Tri Sudibyo Tumipa, Rafael Samuel Ulfani, Dulia Vernando, Lovis VERONICA VERONICA Vidella, Vania Vivikoh, Vivikoh Wanibe, Kenji Dustin Welwen, Welwen Wijaya, Jonathan Wijaya, Selvi Elyana Winsen, Winsen Wulan Purnama Sari Yanti, Bely Novi Yoel Yoel Yulfiswandi, Yulfiswandi Yuni Priskila Ginting Yunior, Khomeiny Zahra, Amalia Zhang, Henry Yono