Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Inferensi

Peramalan Penjualan Helm dengan Metode ARIMA (Studi Kasus Bagus Store) Ida Bagus Bayu Mahayana; Indrawan Mulyadi; Siti Soraya
Inferensi Vol 5, No 1 (2022): Inferensi
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j27213862.v5i1.12469

Abstract

Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang dengan memanfaatkan informasi yang ada pada masa itu, untuk menimbang kegiatan di masa yang akan datang. Metode yang digunakan adalah metode ARIMA (Autoregressive Integrated Moving Average) untuk menghasilkan peramalan yang cukup baik dibandingkan dengan metode-metode lainnya.Tujuan Penelitian ini adalah untuk mengetahui hasil peramalan penjualan helm pada toko Bagus Store untuk masa yang akan datang. Penyajian Data Setelah melakukan penelitian dan pengambilan data yang dilakukan secara primer pada toko Bagus Store. Dalam penelitian ini peneliti melakukan peramalan dengan metode ARIMA (Autoregreted Intergrated Moving Average) untuk data penjualan dari 21 September 2021 sampai 21 Desember. Dengan menggunakan aplikasi Minitab untuk melakukan perhitungan. Diantara semua model peneliti menemukan 3 model ARIMA yaitu ARIMA (1,0,1), ARIMA (1,0,0) dan ARIMA (0,0,1). Diantara 3 model tersebut model ARIMA (1,0,1) adalah model yang paling tepat dikarenakan hasi P valuenya lebih kecil dari 0,5.
Forecasting Tourist Visits During The Covid-19 Pandemic and MotoGP Events Using The Sarima Method Soraya, Siti; Rahima, Phyta; Primajati, Gilang; Nurhidayati, Maulida; Fajri, Mohammad
Inferensi Vol 7, No 3 (2024)
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j27213862.v7i3.20139

Abstract

The 5.0 era has made the tourism sector one of the measures of the economic welfare of a region, such as in West Nusa Tenggara (NTB). This is proven by the presence of various types of MSMEs and their innovations and the increasing number of tourist visits to NTB from year to year. The condition of the tourism sector certainly has a positive impact on increasing NTB's economic growth and indirectly on optimizing existing infrastructure. However, extraordinary events such as the earthquake in 2018 and the COVID-19 pandemic resulted in the decline of NTB tourism visits. Then tourist visits in NTB increased again with the holding of the MotoGP  Event. The purpose of this study is to forecast the number of tourist visits to NTB. This is very much needed in helping the government to prepare appropriate policies if there is a possibility of a surge in tourist visits in the following years. As well as anticipating if there are other extraordinary events such as earthquakes or global cases. The method used in this study is the Seasonal Autoregressive Integrated Moving Average (SARIMA) Method. The stages in this method are by describing data, preprocessing data, identifying stationary models, estimating models, selecting the best SARIMA model and forecasting with the obtained model to forecasting the next desired period. The results of research that have been conducted state that in 2023 to 2024 the number of tourists visiting NTB continues to increase both domestically and abroad. It is hoped that the results of this research will be able to provide information and contribute knowledge and consideration materials in policy making in the development of NTB government tourism.
Co-Authors Afnidia, Tria Agus Sofian Eka Hidayat Ahmad Ahmad Ahmad Zuli Amrullah Al Jauziah, Hanief Ananda, Laraswati Andika Ellena Saufika Hakim Maharani Anggarawan, Anthony Anthony Anggrawan Aryani, Wiwik Dyah Ashar Banyu Lazuardi Ayu Dasriani, Ni Gusti Aziza, Istin Fitriani Azizah, Istin Fitriani Azmi, Rinda Fitriana Badriyah, Lulu'ul Baiq Chandra Herawati Baiq Dinda Puspita Ayu Bryan Hakim Sakti Pradana Choirul Anwar christofer satria Daniel Happy Putra desventri etmy Devi Yulianti Dewi, Puspita Didiharyono, D. Dodiy Fahmeyzan Ekaningrum, Annisa Yuri Erwin Suhendra Ferdinandus Lidang Witi Firmansyah Firmansyah Firmansyah, Dodiy Fitriana Aziza, Istin Fitriana, Laili Fitriani, Anisa Gede Suwardika Gilang Primajati Gilang Primajati Gusnayanti, Riski Gusti Ayu Aghivirwiati Habib Ratu Perwira Negara Harsyiah, Lisa Helna Wardhana Hendayanti, Ni Putu Nanik Herawat, Baiq Candra Herawati, Baiq Candra Herlina Putri, Novi Hidayat, Agus Sofian Eka Hisbullah Hisbullah Husain Husain I Gusti Ayu Desi Saryanti I Ketut Putu Suniantara I Nyoman Miyarta Yasa I Nyoman Yoga Sumadewa I Wayan Kusuma Di Biagi Ida Bagus Bayu Mahayana Indrawan Mulyadi Isasi, Widani Darma Ismoen, Muhaimin Istin Fitriana Aziza Juanda, M. Rizky Ujiana Julyanti , Nafi’ah Zahra Khairan marzuki Khasnur Hidjah Kurnia, Indri Lalu Ganda Rady Putra Maesaroh Maesaroh Malik Ibrahim Mayasari, Rossa Melati Rosanensi Mohammad Fajri Mukti, M Thoriq Panca Mustakim, Asep Muttahid Shah Nata, I Gede Anjas Kharisma Nurhidayati, Maulida Pangaribuan, Daniel Panji Tanashur Phyta Rahima Primajati , Gilang Primajati, Gilang Primajati, Gilang Puspita Dewi, Puspita Putrajip, Mohamad Yudisa Putri, Andri Qatrunnada R. Ayu Ida Aryani Rabbani, Muhammad Haikal Rahima, Pitha Rahmiati, Baiq Fitria Ratmaji, Muji Regina Pricilia Yunika Riana Riana Rianti, Andri Putri Rifani Nur Sindy Setiawan Rismayati, Ria Rizal, Ahmad Ashril Rizqi, Retno Inten Rizwan Arisandi, Rizwan Sahdan, Sahdan Santi Puteri Rahayu Saputra, Habibi Yusup Setiawan Setiawan Setyawan, Ari Shilvia Nurin Ni’mah Sirojul Hadi Subhan Hadi Sufahani, Suliadi Firdaus Supiarmo, M. Gunawan Suriyati ., Suriyati Syaharuddin Syaharuddin Ulul Azmi Verma, Kirti Widhi, Bidari Andaru Widia Febriana, Widia Wirajaya Kusuma Yunika, Regina Pricilia Yustina Hendrayati Baba Zilullah Nazir Hadi