Articles
TEACHERS EXPECTATION OF STUDENTS’ THINKING PROCESSES IN WRITTEN WORKS: A SURVEY OF TEACHERS’ READINESS IN MAKING THINKING VISIBLE
As'ari, Abdur Rahman;
Kurniati, Dian;
Subanji, Subanji
Journal on Mathematics Education Vol 10, No 3 (2019)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (876.323 KB)
|
DOI: 10.22342/jme.10.3.7978.409-424
The trends of teaching mathematical thinking and the existence of two thinking skills (critical dan creative thinking) the required by 21st-century skills have created needs for teachers to know their students’ thinking processes. This study is intended to portray how mathematics teachers expect their students showing their thinking processes in students’ written work. The authors surveyed Whatsapp and Telegram group of mathematics teachers. First, the authors shared the result of the literature review and the governmental regulations about the need to develop thinking skills. Second, the authors stated that the potentials of students’ written works as a tool for knowing students’ thinking processes. Third, the authors sent a simple mathematical problem with the topic of algebra and asked the mathematics teachers how should their students answer that problem such that they can easily monitor and assess their students’ thinking processes. A total of 25 teachers participated voluntarily in this survey. Results of the survey were triangulated with direct trial data in lecture classes at both undergraduate and postgraduate levels. The result indicates that participating mathematics teachers do not expect too much for their students to show their thinking processes in written work. Teacher’s focus is mostly on the accuracy and the correctness of their students’ mathematics answer.
EXPLORING THE EXPLANATION OF PRE-SERVICE TEACHER IN MATHEMATICS TEACHING PRACTICE
Murtafiah, Wasilatul;
Sa'dijah, Cholis;
Chandra, Tjang Daniel;
Susiswo, Susiswo;
As'ari, Abdur Rahman
Journal on Mathematics Education Vol 9, No 2 (2018)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (371.813 KB)
|
DOI: 10.22342/jme.9.2.5388.259-270
This study aims to describe the types of explanations made by pre-service teachers in mathematics learning. In this research, the types of explanations are used to describe the explanatory trends used by pre-service teachers in mathematics teaching. The descriptive qualitative research was chosen in this research. The research subjects are pre-service teacher as the students of Mathematics Education of PGRI Madiun University and Madura University who are studying Field Experience Practice. Of the 105 mathematics student, five students with a cumulative grade achievement of more than 3.50 were observed during the teaching practice at the school for approximately five meetings. The research data was obtained from observation, video recording, and interview. Data analysis was done through data condensation, data presentation, and conclusion/verification focused on pre-service teacher explanation on mathematics learning activity. The research findings indicate that the explanation used by the pre-service teacher in the mathematics learning starting from the most frequently used is the descriptive explanation (51,7%), giving of reason (36,2%) and interpretative (12,1%). Descriptive explanations are used to describe mathematical procedures. The type of reason-giving explanation is used to explain reasons based on mathematical principles. Furthermore, the interpretative explanation is used to explain the concepts and facts of mathematics.
COMPARING MODEL-BUILDING PROCESS: A MODEL PROSPECTIVE TEACHERS USED IN INTERPRETING STUDENTS’ MATHEMATICAL THINKING
Sapti, Mujiyem;
Purwanto, Purwanto;
Irawan, Edy Bambang;
As'ari, Abdur Rahman;
Sa'dijah, Cholis;
Susiswo, Susiswo;
Wijaya, Ariyadi
Journal on Mathematics Education Vol 10, No 2 (2019)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22342/jme.10.2.7351.171-184
Mathematical thinking is an important aspect of mathematics education and, therefore, also needs to be understood by prospective teachers. Prospective teachers should have the ability to analyze and interpret students’ mathematical thinking. Comparing model is one of the interpretation models from Wilson, Lee, and Hollebrands. This article will describe the prospective teacher used the model of the building process in interpretation students' mathematical thinking. Subjects selected by considering them in following the students’ strategies in solving the Building Construction Problem. Comparing model is a model of interpretation in which a person interprets student thinking based on student work. There are two types comparing model building process prospective teacher use in interpreting students’ mathematical thinking ie. comparing work and comparing knowledge. In comparing works, prospective teachers use an external representation rubric. This is used to analyze student activities in order to provide an interpretation that is comparing the work of students with their own work. In comparing knowledge, prospective teachers use internal representation rubrics to provide interpretation by comparing the students' work with their knowledge or thought.
EXPLORING THE MENTAL STRUCTURE AND MECHANISM: HOW THE STYLE OF TRUTH-SEEKERS IN MATHEMATICAL PROBLEM-SOLVING?
Kurniati, Dian;
Purwanto, Purwanto;
As'ari, Abdur Rahman;
Dwiyana, Dwiyana
Journal on Mathematics Education Vol 9, No 2 (2018)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22342/jme.9.2.5377.311-326
The Mathematics students who perform truth-seeking process upon solving mathematical problems were unique. Therefore, the study deems it necessary to know students’ mental structure and mechanism so that they can make the right decision by performing truth-seeking. However, no research has delved into the mental structures and mechanisms of Mathematics students, who tend to grapple with truth-seeking processes extensively. This study was explorative qualitative because the aims to describe the types of mental structure and mechanism of Mathematics students upon the truth-seeking process in solving mathematical problems. The research subjects are four Mathematics students at the University of Jember who perform truth-seeking and can communicate fluently when performing think-aloud. Their responses in the answer sheets drove the determination of research subjects' tendency in truth-seeking. Afterward, the results of think-aloud and task-based interview were put under analysis, so as to determine the types of mental structure and mechanism. The research findings have indicated that (1) all mental structures have been constructed by all research subjects and (2) two types of mental mechanism are evident among the subjects, including the process of interiorization coupled with coordination and another process encompassing interiorization, coordination, and reversal.
OUR PROSPECTIVE MATHEMATIC TEACHERS ARE NOT CRITICAL THINKERS YET
As'ari, Abdur Rahman;
Mahmudi, Ali;
Nuerlaelah, Elah
Journal on Mathematics Education Vol 8, No 2 (2017)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (302.419 KB)
|
DOI: 10.22342/jme.8.2.3961.145-156
In order to help students develop their critical thinking skills, teachers need to model the critical thinking skills and dispositions in front of their students. Unfortunately, very rare studies investigating prospective teachers’ readiness in critical thinking dispositions are available in the field of mathematics education. This study was intended to investigate the level of critical thinking disposition of prospective mathematics teachers. Using case study methods, three studies were done in Malang.Three levels of critical thinkers were identified from these case studies namely: non-critical thinker, emergent critical thinker, developing critical thinker. Majority of prospective mathematics teachers’ critical thinking dispositions are at the non-critical thinker level. Only a few of them are at the emergent critical thinker, and very rare at the developing critical thinker level. It can be concluded that prospective mathematics teachers are not critical thinker yet. Teacher education institutions need to reform their curriculum and instructional practices to improve their students critical thinking skills and dispositions.DOI: http://dx.doi.org/10.22342/jme.8.2.3961.145-156
INVESTIGATION OF CONTINGENCY PATTERNS OF TEACHERS' SCAFFOLDING IN TEACHING AND LEARNING MATHEMATICS
Anwar, Anwar;
Yuwono, Ipung;
Irawan, Edy Bambang;
As'ari, Abdur Rahman
Journal on Mathematics Education Vol 8, No 1 (2017)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (83.658 KB)
|
DOI: 10.22342/jme.8.1.3410.65-76
The purpose of this study is to investigate the patterns of scaffolding contingency in teaching and learning mathematics carried out by three teachers. Contingency patterns are obtained by examining the transcription from video recording of conversation fragments between teachers and students during the provision of scaffolding. The contingency patterns are drawn in three strategies: diagnostic strategy, intervention strategy, and checking diagnosis. The result shows that the three teachers expressed different interaction contingencies in their scaffolding activities: contingent dominant, non-contingent dominant, and pseudo-contingent. It is also found that the learning interaction performed by experienced teachers tends to be contingent dominant compared to novice teachers.Keywords: Contingency, Contingent Dominant, Non-Contingent Dominant, Pseudo Contingent, Scaffolding DOI: http://dx.doi.org/10.22342/jme.8.1.3410.65-76
PENDAMPINGAN PENYUSUNAN SOAL AKM NUMERASI UNTUK GURU MATEMATIKA SMP di KOTA PROBOLINGGO
Chandra, Tjang Daniel;
As'ari, Abdur Rahman;
Parta, I Nengah;
Purwanto, Purwanto;
Nasution, Syaiful Hamzah
PEDULI: Jurnal Ilmiah Pengabdian Pada Masyarakat Vol 5 No 2 (2021)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37303/peduli.v5i2.336
Abstrak Mulai tahun 2021 Kementerian Pendidikan dan Kebudayaan akan mulai menerapkan asesmen nasional. Asesmen nasional mengukur dua macam literasi yaitu literasi membaca dan literasi matematika ( atau Numerasi ). Salah satu instrumen utama yang digunakan dalam asesmen nasional adalah Asesmen Kompetensi Minimum (AKM) yang mengukur literasi membaca dan literasi matematika ( numerasi ) siswa. AKM numerasi merupakan hal yang baru bagi para guru matematika SMP. Oleh karena itu tim pengabdian masyarakat jurusan matematika UM merencanakan mengadakan workshop penyusunan AKM numerasi bagi guru matematika SMP di kota Probolinggo. Diharapkan melalui workshop ini, para guru dapat disiapkan untuk membuat soal-soal AKM numerasi. Dilaksanakan 2 kali workshop. Pada workshop pertama, tim pengabdian memberikan beberapa materi seperti penjelasan tentang AKM numerasi, pembuatan soal AKM numerasi tentang geometri dan aljabar, dan bagaimana mengemas soal AKM numerasi dalam bentuk e-LKPD. Sebelum acara diakhiri, para guru diminta untuk mencoba membuat soal AKM numerasi dan e-LKPD. Mereka diberi waktu 2 minggu untuk mengerjakan tugas tersebut dan mempresentasikan hasilnya pada workshop kedua. Hasil yang diperoleh dari workshop adalah para guru memperoleh manfaat tentang materi AKM dan bagaimana menyusun soal AKM numerasi. Kata Kunci: workshop; soal AKM
Tahapan Penalaran Analogi dalam Menyelesaikan Masalah Analogi Indirect
Kristayulita Kristayulita;
Toto Nusantara;
Abdur Rahman As’ari;
Cholis Sa’dijah
Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Vol 3 No 1 (2019): Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami)
Publisher : Mathematics Department
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (353.279 KB)
Tujuan penelitian ini untuk mengidentifikasi tahapan penalaran analogi dalam menyelesaikan masalah analogi indirect. Desain penelitian menggunakan pendekatan kualitatif. Penelitian dilakukan pada siswa Sekolah Menengah Atas Negeri 2 Mataram di kota Mataram. Instrumen yang digunakan berupa masalah analogi yang terdiri atas masalah sumber tentang persamaan kuadrat dan masalah target tentang persamaan trigonometri. Hasil penelitian menunjukan bahwa siswa melakukan penalaran analogi dalam menyelesaikan masalah analogi yang diberikan. siswa dalam menyelesaikan masalah analogi indirect tidak hanya menggunakan tahapan penalaran analogi yang ada. Akan tetapi, siswa melakukan tahapan sebelum melakukan tahapan penalaran analogi berdasarkan Ruppert. Tahapan tersebut disebut dengan tahapan represetation and mathematical modeling, yang dilanjutkan dengan tahapan penalaran analogi yang telah ada. Sehingga tahapan penalaran analogi yang dilakukan siswa dalam menyelesaikan masalah analogi indirect adalah represetation and mathematical modeling, structuring, mapping, applying, dan verifying. Artinya ada tahapan penalaran analogi yang dikembangkan dari Ruppert. Tahapan penalaran analogi dalam menyelesaikan masalah tergantung dari masalah analogi yang diberikan.
Pembelajaran Matematika Qur’ani
Abdur Rahman As’ari
Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Vol 1 No 1 (2017): Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami )
Publisher : Mathematics Department
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (691.446 KB)
Al Qur’an adalah petunjuk bagi semua manusia, termasuk petunjuk bagi guru matematika tentang bagaimana membelajarkan matematika. Di dalam artikel ini, penulis mencoba mengkaji tuntunan ALLAH di dalam Al Qur’an dalam membelajarkan manusia. Hasilnya menunjukkan bahwa pembelajaran matematika yang qur’ani itu adalah pembelajaran yang mengembangkan daya pikir siswa. Mengingat tantangan di era global pada abad ke-21 ini kemampuan berpikir yang dituntut adalah 4Cs, maka pembelajaran matematika Qur’ani adalah pembelajaran matematika yang tidak hanya sekedar memahamkan konsep, tetapi juga membekali siswa untuk menguasai 4Cs. Sehubungan dengan itu, di dalam melaksanakan pembelajaran matematika, guru bisa saja membelajarkan 4Cs melalui infusing, immersing, atau mixed di antara keduanya.
PENGGUNAAN BAHAN MANIPULATIF UNTUK MENINGKATKAN PEMAHAMAN SISWA
Rifaatul Mahmudah;
Abdur Rahman Asari;
Sisworo Sisworo
Jurnal Kajian Pembelajaran Matematika Vol 2, No 1 (2018): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (503.559 KB)
Setiap siswa harus belajar matematika dengan pemahaman (Ghazali, 2011). Salah satu cara meningkatkan pemahaman siswa dalam belajar matematika adalah dengan menerapkan pembelajaran menggunakan bahan manipulatif. Penelitian ini bertujuan untuk mendeskripsikan penggunaan bahan manipulatif untuk meningkatkan pemahaman siswa pada materi Persamaan Linear Satu Variabel (PLSV). Penelitian ini merupakan penelitian kualitatif jenis penelitian tindakan. Analisis data yang digunakan adalah analisis data kuantitatif dan analisis data kualitatif. Subjek penelitian ini adalah 16 siswa kelas VII E di SMP IT Asy-syadzili Pakis. Hasil penelitian menunjukan bahwa penggunaan bahan manipulatif dalam pembelajaran matematika dapat meningkatka pemahaman siswa. Pada siklus I hasil tes akhir siswa menunjukkan 64,29 siswa memperoleh nilai lebih dari 70 meningkat pada siklus II 73,80% siswa memperoleh nilai lebih dari atau sama dengan 70.