p-Index From 2021 - 2026
7.092
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Informatika Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Jurnal Teknik ITS IPTEK Journal of Science IPTEK Journal of Proceedings Series IPTEK The Journal for Technology and Science Techno.Com: Jurnal Teknologi Informasi MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Mikrotek Jurnal Simantec Jurnal Ilmiah Kursor Scan : Jurnal Teknologi Informasi dan Komunikasi Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Register: Jurnal Ilmiah Teknologi Sistem Informasi EMITTER International Journal of Engineering Technology Jurnal Inspiration Briliant: Jurnal Riset dan Konseptual Journal of Development Research Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi INTEGER: Journal of Information Technology Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal ULTIMATICS MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Explore IT : Jurnal Keilmuan dan Aplikasi Teknik Informatika Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) CCIT (Creative Communication and Innovative Technology) Journal SPIRIT ILKOMNIKA: Journal of Computer Science and Applied Informatics Indonesian Journal of Electrical Engineering and Computer Science Jurnal Teknik Informatika (JUTIF) Journal of Technology and Informatics (JoTI) Melek IT: Information Technology Journal Jurnal Nasional Teknik Elektro dan Teknologi Informasi Journal Research of Social Science, Economics, and Management Sewagati Jurnal Indonesia : Manajemen Informatika dan Komunikasi
Claim Missing Document
Check
Articles

Nonlinear regression analysis to predict mandibular landmarks on panoramic radiographs Nafiiyah, Nur; Hanifah, Ayu Ismi; Susanto, Edy; Astuti, Eha Renwi; Fatichah, Chastine; Putra, Ramadhan Hardani; Akbar, Agus Subhan
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2098-2108

Abstract

An automatic system for determining mandibular landmark points on panoramic radiography can reduce errors due to differences in expert professionalism and save time. Previous research has shown that the linear regression method is ineffective at predicting condyle and gonion landmark points in panoramic radiography. So, this research proposes an analysis of nonlinear regression methods (support vector machine (SVM) kernel=‘polynomial’, polynomial regression, ensemble regression) for predicting condyle and gonion landmark points. There are four predicted landmark points, namely the right condyle, left condyle, right gonion, and left gonion. The nonlinear regression methods used are SVM, polynomial regression, and ensemble regression. The Dental and Oral Hospital, within the Faculty of Dentistry at Universitas Airlangga, provides the research data. The research encompasses 119 patients between the ages of 19 and 70, dividing 103 into training and 16 into testing. The research results show that the SVM method is only good at predicting the right condyle point with a mean radial error (MRE) of 4,724 pixels. Meanwhile, to predict the left condyle, right gonion, and left gonion points, it is better to use the polynomial regression method and ensemble regression with an order of success detection rate (SDR) of 37.5%, 18.75%, and 12.5%, respectively.
Optimasi Hyperparameter pada Convolutional Neural Network untuk Klasifikasi Jenis Penyakit Kanker Kulit menggunakan Bayesian Optimization Nuzula, Muhammad Iqbal Firdaus; Fatichah, Chastine
ILKOMNIKA Vol 7 No 1 (2025): Volume 7, Number 1, April 2025
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28926/ilkomnika.v6i3.690

Abstract

Penelitian ini bertujuan untuk meningkatkan kinerja model Convolutional Neural Network (CNN) dalam klasifikasi citra melalui penerapan teknik optimasi hyperparameter. CNN merupakan metode pembelajaran mendalam yang efektif dalam pengenalan pola visual, namun performanya sangat dipengaruhi oleh pemilihan nilai hyperparameter, seperti jumlah filter, ukuran kernel, learning rate, dan jumlah epoch. Dalam studi ini digunakan metode Bayesian Optimization untuk menentukan kombinasi hyperparameter yang optimal pada dataset citra tertentu. Eksperimen dilakukan dengan menggunakan empat arsitektur CNN, yaitu ResNet50V2, EfficientNetV2S, EfficientNetV2M, dan EfficientNetV2L. Evaluasi kinerja model dilakukan dengan menggunakan metrik akurasi, presisi, recall, f1-score, dan kappa score. Hasil penelitian menunjukkan bahwa penerapan Bayesian Optimization secara konsisten meningkatkan performa model CNN dibandingkan dengan konfigurasi default. Pada arsitektur EfficientNetV2M, optimasi dengan Bayesian Optimization menghasilkan akurasi sebesar 0,81, presisi 0,83, recall 0,77, f1-score 0,80, dan kappa score 0,61. Pada arsitektur ResNet50V2, metode ini menghasilkan precision tinggi sebesar 0,97 meskipun recall-nya 0,57, menunjukkan keunggulan dalam mengurangi kesalahan false positive. Selain itu, Bayesian Optimization juga memberikan precision 0,99 pada EfficientNetV2S. Keunggulan utama Bayesian Optimization terletak pada efisiensinya dalam mengeksplorasi ruang hyperparameter, sehingga mampu mencapai performa optimal dengan jumlah evaluasi yang lebih sedikit dibandingkan metode Random Search yang membutuhkan evaluasi lebih banyak dan kurang stabil.
KOMPARASI METODE SCICA DAN WICA PADA PRAPROSES DATA EEG OTAK MANUSIA UNTUK DETEKSI PENYAKIT EPILEPSI Bagusmulya, Aditya; Tjandrasa, Handayani; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No. 2, Juli 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i2.a564

Abstract

Epilepsi merupakan salah satu kelainan pada otak manusia yang tidak dapat disembuhkan. Penyakit ini menimbulkan kejang pada tubuh dan sangat mengganggu aktivitas. Pada tingkat yang parah, epilepsi dapat membahayakan nyawa penderitanya. Oleh sebab itu, epilepsi harus dideteksi secara dini agar penderita segera mendapatkan penanganan yang tepat sehingga keadaannya tidak memburuk. Pada penelitian ini, deteksi epilepsi dilakukan dengan menggunakan beberapa metode, yaitu Independent Component Analysis (ICA), Wavelet Transform (WT), dan Multilayer Perceptron (MLP). Hasil deteksi diklasifikasikan ke dalam tiga kelas, yaitu normal, epilesi tidak kejang, dan epilepsi kejang. Data rekaman electroencephalogram (EEG) yang digunakan berasal dari ''Klinik für Epileptologie, Universität Bonn” yang diperoleh secara online. Data tersebut merupakan EEG single channel sehingga harus menggunakan teknik-teknik ICA untuk single channel, seperti Single Channel Independent Component Analysis (SCICA) dan Wavelet Independent Component Analysis (WICA). Penelitian ini membandingkan kedua teknik tersebut dalam melakukan praproses data sehingga akan terlihat teknik mana yang lebih baik. Hasil pendeteksian terbaik dihasilkan dari model yang menggunakan teknik SCICA sebagai penghilang derau dan ektraksi fitur Discrete Wavelet Transform Daubechies 6 dengan 4 level. Berdasarkan uji coba, metode tersebut menghasilkan akurasi sebesar 92.09%.
SISTEM TEMU KEMBALI CITRA DAUN MENGGUNAKAN METODE REDUCED MULTI SCALE ARCH HEIGHT (R-MARCH) PADA SMARTPHONE Kurniawan, Mirza Galih; Suciati, Nanik; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No. 2, Juli 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i2.a566

Abstract

Metode yang digunakan dalam sistem temu kembali citra daun harus efesien agar dapat berjalan baik pada smartphone yang memiliki sumber daya terbatas. Salah satu metode sistem temu kembali citra daun yang cukup efesien dan dapat diterapkan pada smartphone adalah Multiscale Arch Height (MARCH). MARCH menggunakan karakteristik tinggi lengkungan pada kontur daun sebagai fitur untuk proses temu kembali citra daun. Pada metode MARCH sampel titik pada kontur yang digunakan cukup banyak sehingga masih dimungkinkan mengurangi komputasi metode MARCH dengan cara mereduksi titik acuan Arch Height yang digunakan. Pada penelitian ini diusulkan metode sistem temu kembali citra daun pada smartphone menggunakan metode reduced multi scale arch height (R-MARCH) yang lebih efesien dibanding metode MARCH. Dari percobaan yang sudah dilakukan, didapatkan waktu komputasi yang dibutuhkan metode MARCH adalah 864 milidetik sedangkan R-MARCH 632 milidetik.
EKSTRAKSI TRENDING ISSUE DENGAN PENDEKATAN DISTRIBUSI KATA PADA PEMBOBOTAN TERM UNTUK PERINGKASAN MULTI-DOKUMEN BERITA Aditya, Christian Sri Kusuma; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No. 2, Juli 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i2.a570

Abstract

Penggunaan trending issue dari media sosial Twitter sebagai kalimat penting efektif dalam proses peringkasan dokumen dikarenakan trending issue memiliki kedekatan kata kunci terhadap sebuah kejadian berita yang sedang berlangsung. Pembobotan term dengan TFIDF yang hanya berbasis pada dokumen itu tidak cukup untuk menentukan in-deks dari suatu dokumen. Penentuan indeks yang akurat juga bergantung pada nilai informatif suatu term terhadap kelas atau cluster. Term yang sering muncul di banyak kelas atau cluster seharusnya tidak menjadi term yang penting meskipun nilai TFIDF-nya tinggi. Penelitian ini bertujuan untuk melakukan peringkasan multi dokumen berita menggunakan ekstraksi trending issue dengan pendekatan term distribution on centroid based (TDCB) pada pembobotan fitur dan mengintegrasikannya dengan query expansion sebagai kata kunci dalam peringkasan dokumen. Metode TDCB dilakukan dengan mempertimbangkan adanya kemunculan sub topic dari cluster hasil pengelompokan tweets yang dapat dijadikan nilai informatif tambahan dalam penentuan pembobotan kalimat penting penyusunan ringkasan. Tahapan yang dilakukan untuk menghasilkan ringkasan multi dokumen berita antara lain ekstraksi trending issue, query expansion, auto labelling, seleksi berita, ekstraksi fitur berita, pembobotan kalimat penting dan penyusunan ringkasan. Hasil percobaan menunjukan metode peringkasan dokumen dengan menambahkan nilai informatif sub topic trending issue NeFTIS-TDCB menunjukan nilai rata-rata max-ROUGE-1 terbesar 0.8615 untuk n=30 dari seluruh varian topik berita.
REDUKSI DIMENSI FITUR MENGGUNAKAN ALGORITMA ALOFT UNTUK PENGELOMPOKAN DOKUMEN Hani’ah, Mamluatul; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No. 2, Juli 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i2.a573

Abstract

Pengelompokan dokumen masih memiliki tantangan dimana semakin besar dokumen maka akan menghasilkan fitur yang semakin banyak. Sehingga berdampak pada tingginya dimensi dan dapat menyebabkan performa yang buruk terhadap algoritma clustering. Cara untuk mengatasi masalah ini adalah dengan reduksi dimensi. Metode reduksi dimensi seperti seleksi fitur dengan metode filter telah digunakan untuk pengelompokan dokumen. Akan tetapi metode filter sangat tergantung pada masukan pengguna untuk memilih sejumlah n fitur teratas dari keseluruhan dokumen. Algoritma ALOFT (At Least One FeaTure) dapat menghasilkan sejumlah set fitur secara otomatis tanpa adanya parameter masukan dari pengguna. Karena sebelumnya algoritma ALOFT digunakan pada klasifikasi dokumen, metode filter yang digunakan pada algoritma ALOFT membutuhkan adanya label pada kelas sehingga metode filter tersebut tidak dapat digunakan untuk pengelompokan dokumen. Pada penelitian ini diusulkan metode reduksi dimensi fitur dengan menggunakan variasi metode filter pada algoritma ALOFT untuk pengelompokan dokumen. Sebelum dilakukan proses reduksi dimensi langkah pertama yang harus dilakukan adalah tahap preprocessing kemudian dilakukan perhitungan bobot tfidf. Proses reduksi dimensi dilakukan dengan menggunakan metode filter seperti Document Frequency (DF), Term Contribution (TC), Term Variance Quality (TVQ), Term Variance (TV), Mean Absolute Difference (MAD), Mean Median (MM), dan Arithmetic Mean Geometric Mean (AMGM). Selanjutnya himpunan fitur akhir dipilih dengan algoritma ALOFT. Tahap terakhir adalah pengelompokan dokumen menggunakan dua metode clustering yang berbeda yaitu k-means dan Hierarchical Agglomerative Clustering (HAC). Dari hasil ujicoba didapatkan bahwa kualitas cluster yang dihasilkan oleh metode usulan dengan menggunakan algoritma k-means mampu memperbaiki hasil dari metode VR.
SEGMENTASI DAN PEMISAHAN SEL DARAH PUTIH BERSENTUHAN MENGGUNAKAN K-MEANS DAN HIERARCHICAL CLUSTERING ANALYSIS PADA CITRA LEUKEMIA MYELOID AKUT Harto, Aryo; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 15, No. 2, Juli 2017
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v15i2.a599

Abstract

The success of identification and classification on diagnosing acute myeloid leukemia (AML) diseases based on image processing relies heavily on segmentation result. Segmentation on peripheral blood smear images aims to separate the leukocytes region with others region. To increase the segmentation accuracy on AML images, a few things regarding lighting condition, contrast, staining variations and the existence of touching cells must be overcome. In this study a method for leukocytes segmentation and separate the touching cell on AML images using cluster analysis with K-Means and hierarchical clustering analysis (HCA) is proposed. K-Means method is used to analyze the cluster for AML images segmentation. The AML image datasets with various staining variations is segmented using K-Means method.  The existence of touching cells is separated using HCA method which produce a stable clusters result. Segmentation and cell separation will be processed on local region or sub-image which is obtained from AML images cropping. From the evaluation results in 40 images of AML dataset, the proposed method is capable to properly segment the white blood cells region and separating the touching cell into a single cells. The average value of the segmentation results is 0.977 for precision, 0.885 for recall and 0.928 for Zijdenbos similarity index (ZSI) in white blood cell region. While in nucleus region the average value is 0.975 for precision, 0.924 for recall and 0.948 for ZSI. On cell counting, the error rate is also low which about 7.68%.
KLASIFIKASI DATA EEG UNTUK MENDETEKSI KEADAAN TIDUR DAN BANGUN MENGGUNAKAN AUTOREGRESSIVE MODEL DAN SUPPORT VECTOR MACHINE Mahendra, Yunan Helmi; Tjandrasa, Handayani; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 15, No. 1, Januari 2017
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v15i1.a633

Abstract

Tidur merupakan kebutuhan dasar manusia. Salah satu gangguan tidur yang cukup berbahaya adalah narkolepsi, yaitu gangguan tidur kronis yang ditandai dengan rasa kantuk yang luar biasa di siang hari dan serangan tidur yang terjadi secara tiba-tiba. Salah satu metode dokter untuk mendiagnosis penyakit narkolepsi adalah dengan melihat aktivitas gelombang otak (melalui sinyal EEG) pasien. Penelitian ini bertujuan untuk mengembangkan perangkat lunak yang dapat mengklasifikasikan keadaan tidur dan bangun melalui sinyal EEG secara otomatis. Dataset EEG yang digunakan tersedia di Physionet. Pertama-tama data EEG yang menjadi masukan dilakukan normalisasi dan filtering. Proses filtering dilakukan untuk membagi data menjadi 3 subband yaitu theta, alpha, dan beta. Setelah itu pada masing-masing subband dilakukan tahap ekstraksi fitur menggunakan Autoregressive Model. Hasil estimasi koefisien AR model digunakan sebagai fitur. Metode yang digunakan untuk mengestimasi koefisien AR model yaitu metode Yule-Walker dan metode Burg. Dataset dibagi menjadi data latih dan data uji menggunakan 10-fold cross validation. Data training digunakan untuk membuat SVM Model. SVM Model digunakan untuk mengklasifikasikan data testing sehingga menghasilkan keluaran label 1 untuk tidur dan label 0 untuk bangun. Untuk menentukan kelas final dilakukan majority vote dari hasil klasifikasi masing-masing subband. Performa sistem diperoleh dengan menghitung akurasi, presisi, dan sensitivitas pada setiap skenario uji coba. Skenario uji coba yang dilakukan antara lain dengan memvariasikan order AR, fungsi kernel, dan parameter C pada SVM. Dari hasil uji coba yang dilakukan, metode Yule-Walker menghasilkan rata-rata akurasi 80.60%, presisi 78.19%, dan sensitivitas 77.56%. Metode Burg menghasilkan akurasi 94.01%, presisi 95.70%, dan sensitivitas 93.39%. Hasil tersebut menunjukkan metode Burg memiliki performa lebih baik dibandingan dengan metode Yule-Walker.
PERHITUNGAN DAN PEMISAHAN SEL DARAH PUTIH BERDASARKAN CENTROID DENGAN MENGGUNAKAN METODE MULTI PASS VOTING DAN K-MEANS PADA CITRA SEL ACUTE LEUKEMIA Arisa, Nursanti Novi; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a661

Abstract

Leukemia is one of the dangerous diseases that can cause death. One of the types of leukemia is acute leukemia that includes ALL (Acute Lymphoblastic Leukemia) and AML (Acute Myeloid Leukemia). The fastest identification against this disease can be done by computing and analysing white blood cell types. However, the manual counting and identification of the white blood cell types are still limited by time. Therefore, automatic counting process is necessary to be conducted in order to get the results more quickly and accurately. Previous studies showed that automatic counting process in the image of Acute Leukemia cells faced some obstacles, the existence of touching cell and the implementation of  geometry feature that cannot produce an accurate counting. It is because the shapes of the cell are various. This study proposed a method for the counting of white blood cells and the separation of touching cells on Acute Leukemia cells image by using Multi Pass Voting method (MPV) based on seed detection (centroid) and K-Means method. Initial segmentation used for separating foreground and background area is canny edge detection. The next stage is seed detection (centroid) using Multi Pass Voting method. The counting of white blood cells is based on the results of the centroid produced. The existence of the touching cells are  separated using K-Means method, the determination of the initial centroid  is based on the results of the Multi Pass Voting method. Based on the evaluation results of 40 images of Acute Leukemia dataset, the proposed method is capable to properly compute based on the centroid. It is also able to separate the touching cell into a single cell. The accuracy of the white blood cell counting result is about 98,6%.
KLASIFIKASI SEL SERVIKS PADA CITRA PAP SMEAR BERDASARKAN FITUR BENTUK DESKRIPTOR REGIONAL DAN FITUR TEKSTUR UNIFORM ROTATED LOCAL BINARY PATTERN Sholik, Mohammad; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 15, No. 2, Juli 2017
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v15i2.a669

Abstract

Perubahan orientasi objek pada saat akuisisi memerlukan metode ekstraksi fitur yang invariant terhadap rotasi. Ekstraksi fitur tekstur yang telah digunakan dalam kombinasi fitur sebelumnya untuk klasifikasi sel serviks pada dataset Herlev antara lain homogenitas GLCM dan Local Binary Pattern Histogram Fourier (LBP-HF). Namun perhitungan GLCM sensitif terhadap rotasi dan transformasi fourier LBP-HF mengabaikan penataan struktur histogram dengan hanya mempertimbangkan magnitude spektrum transformasi sehingga kehilangan beberapa informasi diskriminatif dan informasi frekuensi citra.Penelitian ini mengusulkan kombinasi fitur bentuk deskriptor regional dan fitur tekstur Uniform Rotated Local Binary Pattern (uRLBP). uRLBP merupakan metode ekstraksi fitur yang dapat mengatasi kelemahan metode tekstur sebelumnya dengan mengatur arah referensi lokal yang dapat mempertahankan informasi orientasi lokal dan informasi diskriminatif citra sehingga mencapai invariant terhadap rotasi. Pengujian dilakukan dengan membandingkan hasil klasifikasi metode yang diusulkan dengan metode pada penelitian sebelumnya dalam melakukan klasifikasi sel serviks pada citra pap smear.Hasil pengujian menunjukkan bahwa metode yang diusulkan mampu mengklasifikasikan sel serviks lebih optimal dibandingkan metode kombinasi fitur bentuk & fitur tekstur homogenitas GLCM dan metode kombinasi fitur bentuk & fitur tekstur LBP-HF. Nilai akurasi menggunakan metode klasifikasi Fuzzy k-NN adalah 91.59% untuk dua kategori sel dan 67.89% untuk tujuh kelas sel.
Co-Authors Achmad Arwan Adhi Nurilham Aditya Bagusmulya, Aditya afrizal laksita akbar, afrizal laksita Agung Prasetya Agus Subhan Akbar, Agus Subhan Agus Zainal Arifin Agus Zainal Arifin Ahmad Hayam Brilian, Ahmad Hayam Ahmad Saikhu Ahmad Syauqi Ahmad Syauqi Aini, Nuru Ainul Mu'alif Akwila Feliciano Akwila Feliciano Amalia Nurani Basyarah Amelia Devi Putri Ariyanto Andika Pratama Anisa Nur Azizah Anna Kholilah Anny Yuniarti Ardian Yusuf Wicaksono Ariana Yunita Arianto Wibowo Arif Sanjani, Lukman Ario Bagus Nugroho Arisa, Nursanti Novi Arya Yudhi Wijaya Aryo Harto, Aryo Asmawati, Diah Ayu Ismi Hanifah Benny Afandi Bilqis Amaliah Bramantya, Amirullah Andi Budi Pangestu Cahyaningtyas, Zakiya Azizah Christian Sri kusuma Aditya, Christian Sri kusuma Daniel Oranova Siahaan Daniel Sugianto Daniel Swanjaya Darlis Heru Murti Darlis Herumurti Davin Masasih Deni Sutaji Desmin Tuwohingide Dewi Rosida Dhimas Pamungkas Wicaksono Diana Purwitasari Diana Purwitasari Diema Hernyka Satyareni Dimas Renggana, Christiant Dini Adni Navastara, Dini Adni Djoko Purwanto Dwi Kristianto Dwi Taufik Hidayat edy susanto Eha Renwi Astuti Eka Prakarsa Mandyartha Eka Prakarsa Mandyartha Eko Prasetyo Esa Prakasa Evan Tanuwijaya Evelyn Sierra Evy Kamilah Ratnasari Fabroyir, Hadziq Fachrul Pralienka Bani Muhamad Fachrul Pralienka Bani Muhamad Faida Royani Faizin, Muhammad 'Arif Fajar Baskoro Fajar, Aziz Fajrin, Ahmad Miftah Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Farosanti, Lafnidita FATRA NONGGALA PUTRA Febri Liantoni Febri Liantoni, Febri Febriani, Kristina Fiqey Indriati Eka Sari Furqan Aliyuddien Ginardi, R.V. Hari Ginardi, Raden Venantius Hari Gou Koutaki Handayani Tjandrasa Haniefardy, Addien Haq, Dina Zatusiva Hardika Khusnuliawati Hardika Khusnuliawati Hari Ginardi Hendra Mesra hidayat, dwi taufik Hilya Tsaniya I Ketut Eddy Purnama Ilmi, Akhmad Bakhrul Imam Artha Kusuma Imamah Imamah Irfan Subakti, Misbakhul Munir Irzal Ahmad Sabilla Isye Arieshanti Ivan Agung Pandapotan Izzi, Mambaul Jayanti Yusmah Sari Johan Varian Alfa Junaidi Junaidi Keiichi Uchimura Kevin Christian Hadinata Kevin Christian Hadinata Kusuma, Selvia Ferdiana Lukman Hakim M Rahmat Widyanto M. Rahmat Widyanto Machfud, M. Mughniy Mafazy, Muhammad Meftah Mamluatul Hani’ah Maulana, Avin Maulani, Irham Maulidiya, Erika Mauridhi Hery Purnomo Mirza Galih Kurniawan, Mirza Galih Moch Zawaruddin Abdullah Mohammad Sholik Muhamad, Fachrul Pralienka Bani Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Muharrom Al Haromainy Muhammad Riduwan Muhtadin Mustika Mentari Mutmainnah Muchtar Nafiiyah, Nur Nanik Suciati Nanik Suciati Narandha Arya Ranggianto Nazarrudin, Ahmad Ricky Nenden Siti Fatonah Nenden Siti Fatonah Nur Hayatin Nur Nafi’iyah Nur Nafi’iyah Nurilham, Adhi Nurina Indah Kemalasari Nursuci Putri Husain Nurwijayanti nuzula, Muhammad Iqbal firdaus Pradany, Latifa Nurrachma Priambodo, Anas Rachmadi Putra, Ramadhan Hardani R Dimas Adityo R. Dimas Adityo R. V. Hari Ginardi R.V Hari Ginardi R.V. Hari Ginardi Rachmad Abdullah Rahayu, Putri Nur Ramadhan Rosihadi Perdana Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Kartika Dewi Rendra Dwi Lingga P. Riyanarto Sarno Rizal A Saputra Rizal A Saputra, Rizal A Rizal Setya Perdana Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Raaiqa Bintana Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Safhira Maharani Safhira Maharani Sahmanbanta Sinulingga Salim Bin Usman Salim Bin Usman Sambodho, Kriyo Santoso, Bagus Jati Sarimuddin, Sarimuddin Septiyan Andika Isanta Setyawan, Dimas Ari Sherly Rosa Anggraeni Sherly Rosa Anggraeni Shofiya Syidada Siti Mutrofin Siti Mutrofin Siti Rochimah Subali, Made Agus Putra Subhan Nooriansyah Subkhi, M. Bahrul Sudianjaya, Nella Rosa Suhariyanto Suhariyanto Surya Sumpeno Susanti, Martini Dwi Endah Syah Dia Putri Mustika Sari Sylvi Novita Dewi Tanzilal Mustaqim Tesa Eranti Putri Tsaniya, Hilya Tursina, Dara Tuwohingide, Desmin Umi Laily Yuhana, Umi Laily Umy Rizqi Vit Zuraida Wahyu Saputra, Vriza Wattiheluw, Fadli Husein Welly Setiawan Limantoro Wibowo, Prasetyo Wijoyo, Satrio Hadi Wilda Imama Sabilla Yoga Yustiawan Yosi Kristian Yudhi Purwananto Yuhana, Umi Laili Yuita Arum Sari Yulia Niza Yulia Niza Yunan Helmi Mahendra, Yunan Helmi Yuslena Sari, Yuslena Yuwanda Purnamasari Pasrun Zaenal Arifin, Agus Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas