p-Index From 2021 - 2026
7.092
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Informatika Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Jurnal Teknik ITS IPTEK Journal of Science IPTEK Journal of Proceedings Series IPTEK The Journal for Technology and Science Techno.Com: Jurnal Teknologi Informasi MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Mikrotek Jurnal Simantec Jurnal Ilmiah Kursor Scan : Jurnal Teknologi Informasi dan Komunikasi Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Register: Jurnal Ilmiah Teknologi Sistem Informasi EMITTER International Journal of Engineering Technology Jurnal Inspiration Briliant: Jurnal Riset dan Konseptual Journal of Development Research Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi INTEGER: Journal of Information Technology Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal ULTIMATICS MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Explore IT : Jurnal Keilmuan dan Aplikasi Teknik Informatika Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) CCIT (Creative Communication and Innovative Technology) Journal SPIRIT ILKOMNIKA: Journal of Computer Science and Applied Informatics Indonesian Journal of Electrical Engineering and Computer Science Jurnal Teknik Informatika (JUTIF) Journal of Technology and Informatics (JoTI) Melek IT: Information Technology Journal Jurnal Nasional Teknik Elektro dan Teknologi Informasi Journal Research of Social Science, Economics, and Management Sewagati Jurnal Indonesia : Manajemen Informatika dan Komunikasi
Claim Missing Document
Check
Articles

Segmentasi Citra Sel Tunggal Smear Serviks Menggunakan Metode Radiating Normally Biased Generalized Gradient Vector Flow Snake Susanti, Martini Dwi Endah; Tjandrasa, Handayani; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a762

Abstract

Sebuah sistem penyaringan otomatis dan sistem diagnosa yang akurat sangat berguna untuk proses analisis hasil pemeriksaan pap smear. Langkah yang paling utama dari sistem tersebut adalah proses segmentasi sel nukleus dan sitoplasma pada citra hasil pemeriksaan pap smear, karena dapat memengaruhi keakuratan sistem. Normally Biased Generalized Gradient Vector Flow Snake (NBGGVFS) merupakan sebuah algoritma gaya eksternal untuk active contour (snake) yang menggabungkan metode Generalized Gradient Vector Flow Snake (GGVFS) dan Normally Biased Gradient Vector Flow Snake (NBGVFS). Dalam memodelkan snake, terdapat fungsi edge map. Edge map biasanya dihitung dengan menggunakan operator deteksi tepi seperti sobel. Namun, metode ini tidak dapat mendeteksi daerah nukleus dari citra smear serviks dengan benar. Penelitian ini bertujuan untuk segmentasi citra sel tunggal smear serviks dengan memanfaatkan penggunaan Radiating Edge Map untuk menghitung edge map dari citra dengan metode NBGGVFS. Metode yang diusulkan terdiri atas tiga tahapan utama, yaitu tahap praproses, segmentasi awal dan segmentasi kontur. Uji coba dilakukan dengan menggunakan data set Herlev. Pengujian dilakukan dengan membandingkan hasil segmentasi metode yang diusulkan dengan metode pada penelitian sebelumnya dalam melakukan segmentasi citra sel tunggal smear serviks. Hasil pengujian menunjukkan bahwa metode yang diusulkan mampu mendeteksi area nukleus lebih optimal metode penelitian sebelumnya. Nilai rata-rata akurasi dan Zijdenbos Similarity Index (ZSI) untuk segmentasi nukleus adalah 96,96% dan 90,68%. Kemudian, nilai rata-rata akurasi dan ZSI untuk segmentasi sitoplasma adalah 86,78% and 89,35%. Dari hasil evaluasi tersebut, disimpulkan metode yang diusulkan dapat digunakan sebagai proses segmentasi citra smear serviks pada identifikasi kanker serviks secara otomatis.
KLASIFIKASI KUALITAS PERANGKAT LUNAK BERDASARKAN ISO/IEC 25010 MENGGUNAKAN AHP DAN FUZZY MAMDANI UNTUK SITUS WEB E-COMMERCE Wattiheluw, Fadli Husein; Rochimah, Siti; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 17, No. 1, Januari 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i1.a820

Abstract

Evaluasi kualitas fungsional dan antar muka situs web e-commerce dari perspektif pengguna sangat penting untuk membangun atau mengembangkan situs web e-commerce yang memenuhi standar kualitas. Namun, untuk menilai kualitas fungsional dan antar muka dari situs web e-commerce sulit untuk didefinisikan sehingga membutuhkan model evaluasi perangkat lunak. Pentingnya evaluasi kualitas situs web e-commerce berdasarkan karakteristik perangkat lunak utnuk dapat dikembangkan dan menyesuaikan standar kualitas perangkat lunak.Penelitian ini mengusulkan sebuah model evaluasi kualitas situs web e-commerce berdasarkan karakteristik pada functional suitability, performance efficiency, reliability dan usability pada ISO/IEC 25010. Pada penelitian ini menggunakan metode Fuzzy Mamdani untuk menilai kualitas dari situs web e-commerce berdasarkan karakteristik dan pembobotan kepentingan karakteristik menggunakan metode Analytical Hierarchy Process. Model yang diusulkan diterapkan ke beberapa situs web e-commerce di Indonesia sebagai studi kasus untuk mengevaluasi tingkat kualitas perangkat lunak. Hasil yang didapat dari model evaluasi dapat membantu pengembang untuk merancang dan menggembangkan situs web e-commerce yang kualitas dengan tingkat accurasy 0,684%.
KLASIFIKASI KEBUTUHAN NON-FUNGSIONAL MENGGUNAKAN FSKNN BERBASIS ISO/IEC 25010 Hakim, Lukman; Rochimah, Siti; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a823

Abstract

Aspek kualitas kebutuhan non-fungsional merupakan salah satu faktor penting yang berperan dalam kesuksesan pengembangan perangkat lunak. Namun, mengidentifikasi aspek kualitas kebutuhan non-fungsional merupakan hal yang sulit untuk dilakukan. Karena aspek kualitas kebutuhan non-fungsional sering ditemukan tercampur dengan kebutuhan fungsional.  Oleh karena itu dibutuhkan suatu cara untuk dapat mengidentifikasi aspek kualitas kebutuhan non-fungsional. Penelitian yang ada mampu mengidentifikasi aspek kebutuhan non-fungsional dengan melakukan klasifikasi. Akan tetapi, standar kualitas yang digunakan sebagai rujukan untuk melabeli kalimat kebutuhan masih menggunakan standar ISO/IEC 9126. ISO/IEC 9126 merupakan standar lama yang dirilis pada tahun 2001. Peneliti sebelumnya mengungkapkan ambiguitas dalam enam sub-atribut pada struktur hirarkis ISO/IEC 9126. Oleh karena itu, standar kualitas yang digunakan untuk melabeli kalimat kebutuhan pada penelitian ini adalah ISO/IEC 25010. Sedangkan metode klasifikasi yang digunakan adalah FSKNN. Metode klasifikasi yang digunakan diuji dengan menggunakan nilai tetangga terdekat 10, 20 dan 30.  Pada penelitian ini metode FSKNN berhasil memeroleh nilai tertinggi berdasarkan ground truth pakar yaitu precision sebesar 22.55 dan recall 27.64.
Perbaikan Segmentasi Pembuluh Darah Tipis Pada Citra Retina Menggunakan Fuzzy Entropy Farosanti, Lafnidita; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a857

Abstract

Diabetic Retinopathi adalah kelainan pembuluh darah retina pada mata yang diakibatkan komplikasi penyakit diabetes. Deteksi lebih dini diperlukan agar kelainan ini dapat ditangani secara cepat dan tepat. Kelainan ini ditandai dengan melemahnya bagian pembuluh darah tipis akibat tersumbatnya aliran darah kemudian menyebabkan bengkak pada mata bahkan kebutaan. Oleh karena itu diperlukan metode analisa pembuluh darah retina melalui proses segmentasi pembuluh darah terutama pada bagian penting yaitu pembuluh darah tipis. Peneliti mengusulkan penggabungan metode perbaikan pembuluh darah tipis atau yang dikenal dengan Thin Vessel Enhancement dan Fuzzy Entropy. Thin Vessel Enhancement berfungsi untuk memperbaiki  citra agar dapat mengekstrak lebih banyak bagian pembuluh darah khususnya pembluh darah tipis,  sedangkan Fuzzy Entropy dapat menentukan nilai optimal threshold berdasarkan nilai entropy pada membership function. Segmentasi yang dihasilkan dibagi menjadi 3 kategori yaitu pembuluh darah utama, medium, dan tipis. Uji coba dilakukan terhadap metode Thin Vessel Enhancement menggunakan 1 kernel dan Fuzzy Entropy dari nilai threshold ke-1 maka diperoleh nilai accuracy, sensitivity, dan specivicity sebesar 94.81%, 66.83%, dan 97.51%.
KLASTERISASI DOKUMEN MENGGUNAKAN WEIGHTED K-MEANS BERDASARKAN RELEVANSI TOPIK Riduwan, Muhammad; Fatichah, Chastine; Yuniarti, Anny
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a892

Abstract

Jumlah penelitian di dunia mengalami perkembangan yang pesat, setiap tahun berbagai peneliti dari penjuru dunia menghasilkan karya ilmiah seperti makalah, jurnal, buku dsb. Metode klasterisasi dapat digunakan untuk mengelompokkan dokumen karya ilmiah ke dalam suatu kelompok tertentu berdasarkan relevansi antar topik. Klasterisasi pada dokumen memiliki karakteristik yang berbeda karena tingkat kemiripan antar dokumen dipengaruhi oleh kata-kata pembentuknya. Beberapa metode klasterisasi kurang memperhatikan nilai semantik dari kata. Sehingga klaster yang terbentuk kurang merepresentasikan isi topik dokumen. Klasterisasi dokumen teks masih memiliki kemungkinan adanya outlier karena pemilihan fitur teks yang tidak optimal. Oleh karena itu dibutuhkan pemrosesan data yang tepat serta metode yang mengoptimalkan hasil klaster. Penelitian ini mengusulkan metode klasterisasi dokumen menggunakan Weighted K-Means yang dipadukan dengan Maximum Common Subgraph. Weighted k-means digunakan untuk klasterisasi awal dokumen berdasarkan kata-kata yang diekstraksi. Pembentukan Weighted K-Means berdasarkan perhitungan Word2Vec dan TextRank dari kata-kata dalam dokumen. Maximum common subgraph merupakan tahap pembentukan graf yang digunakan dalam penggabungan klaster untuk menghasilkan klaster baru yang lebih optimal. pembentukan graf dilakukan dengan perhitungan nilai Word2vec dan Co-occurrence dari klaster. Representasi topik dokumen tiap klaster dapat dihasilkan dari pemodelan topik Latent Dirichlet Allocation (LDA). Pengujian dilakukan dengan menggunakan dataset artikel ilmiah dari Scopus. Hasil dari analisis Koherensi topik menunjukkan nilai koherensi usulan metode adalah 0.532 pada dataset 1 yang bersifat homogen dan 0.472 pada dataset 2 yang bersifat heterogen.
FACE RECOGNITION USING DEEP NEURAL NETWORKS WITH THE COMBINATION OF DISCRETE WAVELET TRANSFORM, STATIONARY WAVELET TRANSFORM, AND DISCRETE COSINE TRANSFORM METHODS Akbar, Afrizal Laksita; Fatichah, Chastine; Saikhu, Ahmad
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 18, No. 2, July 2020
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v18i2.a1000

Abstract

Personal identification can be done by using face, fingerprint, palm prints, eye’s retina, or voice recognition which commonly called as biometric methods. Face recognition is the most popular and widely used among those biometric methods. However, there are some issues in the implementation of this method: lighting factor, facial expression, and attributes (chin, mustache, or wearing some accessories). In this study, we propose a combination method of Discrete Wavelet Transform and Stationary Wavelet Transform that able to improve the image quality, especially in the small-sized image. Moreover, we also use Histogram Equalization in order to correct noises such as over or under exposure, Discrete Cosine Transform in order to transform the image into frequency domain, and Deep Neural Networks in order to perform the feature extraction and classify the image. A 10-fold cross-validation method was used in this study. As the result, the proposed method showed the highest accuracy up to 92.73% compared to Histogram Equalization up to 80.73%, Discrete Wavelet Transform up to 85.85%, Stationary Wavelet Transform up to 64.27%, Discrete Cosine Transform up to 89.50%, the combination of Histogram Equalization, Discrete Wavelet Transform, and Stationary Wavelet Transform up to 69.77%, and the combination of Stationary Wavelet Transform, Discrete Wavelet Transform, and Histogram Equalization up to 77.39%.
FACIAL INPAINTING IN UNALIGNED FACE IMAGES USING GENERATIVE ADVERSARIAL NETWORK WITH FEATURE RECONSTRUCTION LOSS Maulana, Avin; Fatichah, Chastine; Suciati, Nanik
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 18, No. 2, July 2020
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v18i2.a1004

Abstract

Facial inpainting or face restoration is a process to reconstruct some missing region on face images such that the inpainting results still can be seen as a realistic and original image without any missing region, in such a way that the observer could not realize whether the inpainting result is a generated or original image. Some of previous researches have done inpainting using generative network, such as Generative Adversarial Network. However, some problems may arise when inpainting algorithm have been done on unaligned face. The inpainting result show spatial inconsistency between the reconstructed region and its adjacent pixel, and the algorithm fail to reconstruct some area of face. Therefore, an improvement method in facial inpainting based on deep-learning is proposed to reduce the effect of the stated problem before, using GAN with additional loss from feature reconstruction and two discriminators. Feature reconstruction loss is a loss obtained by using pretrained network VGG-Net, Evaluation of the result shows that additional loss from feature reconstruction loss and two type of discriminators may help to increase visual quality of inpainting result, with higher PSNR and SSIM than previous result.
ENHANCEMENT OF DECISION TREE METHOD BASED ON HIERARCHICAL CLUSTERING AND DISPERSION RATIO Setyawan, Dimas Ari; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 18, No. 2, July 2020
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v18i2.a1005

Abstract

The classification process using a decision tree is a classification method that has a feature selection process. Decision tree classifications using information gain have a disadvantage when the dataset has unique attributes for each imbalanced class record and distribution. The data used for decision tree classification has 2 types, numerical and nominal. The numerical data type is carried out a discretization process so that it gets data intervals. Weaknesses in the information gain method can be reduced by using a dispersion ratio method that does not depend on the class distribution, but on the frequency distribution. Numeric type data will be dis-criticized using the hierarchical clustering method to obtain a balanced data cluster. The data used in this study were taken from the UCI machine learning repository, which has two types of numeric and nominal data. There are two stages in this research namely, first the numeric type data will be discretized using hierarchical clustering with 3 methods, namely single link, complete link, and average link. Second, the results of discretization will be merged again then the formation of trees with splitting attributes using dispersion ratio and evaluated with cross-validation k-fold 7. The results obtained show that the discretization of data with hierarchical clustering can increase predictions by 14.6% compared with data without discretization. The attribute splitting process with the dispersion ratio of the data resulting from the discretization of hierarchical clustering can increase the prediction by 6.51%.
MULTI-DOCUMENT SUMMARIZATION USING A COMBINATION OF FEATURES BASED ON CENTROID AND KEYWORD Ranggianto, Narandha Arya; Purwitasari, Diana; Fatichah, Chastine; Sholikah, Rizka Wakhidatus
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 21, No. 2, July 2023
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v21i2.a1195

Abstract

Summarizing text in multi-documents requires choosing important sentences which are more complex than in one document because there is different information which results in contradictions and redundancy of information. The process of selecting important sentences can be done by scoring sentences that consider the main information. The combination of features is carried out for the process of scoring sentences so that sentences with high scores become candidates for summary. The centroid approach provides an advantage in obtaining key information. However, the centroid approach is still limited to information close to the center point. The addition of positional features provides increased information on the importance of a sentence, but positional features only focus on the main position. Therefore, researchers use the keyword feature as a research contribution that can provide additional information on important words in the form of N-grams in a document. In this study, the centroid, position, and keyword features were combined for a scoring process which can provide increased performance for multi-document news data and reviews. The test results show that the addition of keyword features produces the highest value for news data DUC2004 ROUGE-1 of 35.44, ROUGE-2 of 7.64, ROUGE-L of 37.02, and BERTScore of 84.22. While the Amazon review data was obtained with ROUGE-1 of 32.24, ROUGE-2 of 6.14, ROUGE-L of 34.77, and BERTScore of 85.75. The ROUGE and BERScore values outperform the other unsupervised models.
OVERSAMPLING HYBRID METHOD FOR HANDLING MULTI-LABEL IMBALANCED Tursina, Dara; Anggraeni, Sherly Rosa; Fatichah, Chastine; Irfan Subakti, Misbakhul Munir
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 22, No. 1, January 2024
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v22i1.a1208

Abstract

Data and information continue to increase along with the development of digital technology. Data availability is becoming increasingly numerous and complex. The existence of unbalanced data causes classification errors due to the dominance of majority-class data over the minority class. Not only limited to the binary class, but data imbalance is also often encountered in multi-label data, which become increasingly important in recent years due to its vast application scope. However, the problem of class imbalance has been a characteristic of many complex multi-label datasets, making it the focus of this research. Handling unbalanced multi-label data still has a lot of potential for development. One approach, Synthetic Oversampling of Multi-Label Data Based on Local Label Distribution (MLSOL) and Integrating Unsupervised Clustering and Label-specific Oversampling to Tackle Imbalanced Multi-Label Data (UCLSO), has been developed. UCLSO's attention only focuses on the majority class, which can lead to data imbalance and excessive overfitting. Although effective in preventing majority class domination, this approach cannot overcome the lack of variation within the minority class. By contrast, MLSOL focuses on minority classes, allowing for variations in multi-label data and significantly improving classification performance. This research aims to overcome the problem of data imbalance by combining the MLSOL and UCLSO oversampling methods. Combining these two approaches is expected to exploit the strengths and reduce the weaknesses of each, resulting in significant performance improvements. The trial results show that the hybrid oversampling method produces the highest value on biological data with an F-1 score of 88%. Meanwhile, the single oversampling methods UCLSO and MLSOL on biological data produce an F-1 score of 67% and 62%, respectively.
Co-Authors Achmad Arwan Adhi Nurilham Aditya Bagusmulya, Aditya afrizal laksita akbar, afrizal laksita Agung Prasetya Agus Subhan Akbar, Agus Subhan Agus Zainal Arifin Agus Zainal Arifin Ahmad Hayam Brilian, Ahmad Hayam Ahmad Saikhu Ahmad Syauqi Ahmad Syauqi Aini, Nuru Ainul Mu'alif Akwila Feliciano Akwila Feliciano Amalia Nurani Basyarah Amelia Devi Putri Ariyanto Andika Pratama Anisa Nur Azizah Anna Kholilah Anny Yuniarti Ardian Yusuf Wicaksono Ariana Yunita Arianto Wibowo Arif Sanjani, Lukman Ario Bagus Nugroho Arisa, Nursanti Novi Arya Yudhi Wijaya Aryo Harto, Aryo Asmawati, Diah Ayu Ismi Hanifah Benny Afandi Bilqis Amaliah Bramantya, Amirullah Andi Budi Pangestu Cahyaningtyas, Zakiya Azizah Christian Sri kusuma Aditya, Christian Sri kusuma Daniel Oranova Siahaan Daniel Sugianto Daniel Swanjaya Darlis Heru Murti Darlis Herumurti Davin Masasih Deni Sutaji Desmin Tuwohingide Dewi Rosida Dhimas Pamungkas Wicaksono Diana Purwitasari Diana Purwitasari Diema Hernyka Satyareni Dimas Renggana, Christiant Dini Adni Navastara, Dini Adni Djoko Purwanto Dwi Kristianto Dwi Taufik Hidayat edy susanto Eha Renwi Astuti Eka Prakarsa Mandyartha Eka Prakarsa Mandyartha Eko Prasetyo Esa Prakasa Evan Tanuwijaya Evelyn Sierra Evy Kamilah Ratnasari Fabroyir, Hadziq Fachrul Pralienka Bani Muhamad Fachrul Pralienka Bani Muhamad Faida Royani Faizin, Muhammad 'Arif Fajar Baskoro Fajar, Aziz Fajrin, Ahmad Miftah Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Farosanti, Lafnidita FATRA NONGGALA PUTRA Febri Liantoni Febri Liantoni, Febri Febriani, Kristina Fiqey Indriati Eka Sari Furqan Aliyuddien Ginardi, R.V. Hari Ginardi, Raden Venantius Hari Gou Koutaki Handayani Tjandrasa Haniefardy, Addien Haq, Dina Zatusiva Hardika Khusnuliawati Hardika Khusnuliawati Hari Ginardi Hendra Mesra hidayat, dwi taufik Hilya Tsaniya I Ketut Eddy Purnama Ilmi, Akhmad Bakhrul Imam Artha Kusuma Imamah Imamah Irfan Subakti, Misbakhul Munir Irzal Ahmad Sabilla Isye Arieshanti Ivan Agung Pandapotan Izzi, Mambaul Jayanti Yusmah Sari Johan Varian Alfa Junaidi Junaidi Keiichi Uchimura Kevin Christian Hadinata Kevin Christian Hadinata Kusuma, Selvia Ferdiana Lukman Hakim M Rahmat Widyanto M. Rahmat Widyanto Machfud, M. Mughniy Mafazy, Muhammad Meftah Mamluatul Hani’ah Maulana, Avin Maulani, Irham Maulidiya, Erika Mauridhi Hery Purnomo Mirza Galih Kurniawan, Mirza Galih Moch Zawaruddin Abdullah Mohammad Sholik Muhamad, Fachrul Pralienka Bani Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Muharrom Al Haromainy Muhammad Riduwan Muhtadin Mustika Mentari Mutmainnah Muchtar Nafiiyah, Nur Nanik Suciati Nanik Suciati Narandha Arya Ranggianto Nazarrudin, Ahmad Ricky Nenden Siti Fatonah Nenden Siti Fatonah Nur Hayatin Nur Nafi’iyah Nur Nafi’iyah Nurilham, Adhi Nurina Indah Kemalasari Nursuci Putri Husain Nurwijayanti nuzula, Muhammad Iqbal firdaus Pradany, Latifa Nurrachma Priambodo, Anas Rachmadi Putra, Ramadhan Hardani R Dimas Adityo R. Dimas Adityo R. V. Hari Ginardi R.V Hari Ginardi R.V. Hari Ginardi Rachmad Abdullah Rahayu, Putri Nur Ramadhan Rosihadi Perdana Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Kartika Dewi Rendra Dwi Lingga P. Riyanarto Sarno Rizal A Saputra Rizal A Saputra, Rizal A Rizal Setya Perdana Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Raaiqa Bintana Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Safhira Maharani Safhira Maharani Sahmanbanta Sinulingga Salim Bin Usman Salim Bin Usman Sambodho, Kriyo Santoso, Bagus Jati Sarimuddin, Sarimuddin Septiyan Andika Isanta Setyawan, Dimas Ari Sherly Rosa Anggraeni Sherly Rosa Anggraeni Shofiya Syidada Siti Mutrofin Siti Mutrofin Siti Rochimah Subali, Made Agus Putra Subhan Nooriansyah Subkhi, M. Bahrul Sudianjaya, Nella Rosa Suhariyanto Suhariyanto Surya Sumpeno Susanti, Martini Dwi Endah Syah Dia Putri Mustika Sari Sylvi Novita Dewi Tanzilal Mustaqim Tesa Eranti Putri Tsaniya, Hilya Tursina, Dara Tuwohingide, Desmin Umi Laily Yuhana, Umi Laily Umy Rizqi Vit Zuraida Wahyu Saputra, Vriza Wattiheluw, Fadli Husein Welly Setiawan Limantoro Wibowo, Prasetyo Wijoyo, Satrio Hadi Wilda Imama Sabilla Yoga Yustiawan Yosi Kristian Yudhi Purwananto Yuhana, Umi Laili Yuita Arum Sari Yulia Niza Yulia Niza Yunan Helmi Mahendra, Yunan Helmi Yuslena Sari, Yuslena Yuwanda Purnamasari Pasrun Zaenal Arifin, Agus Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas