p-Index From 2021 - 2026
7.092
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Informatika Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Jurnal Teknik ITS IPTEK Journal of Science IPTEK Journal of Proceedings Series IPTEK The Journal for Technology and Science Techno.Com: Jurnal Teknologi Informasi MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Mikrotek Jurnal Simantec Jurnal Ilmiah Kursor Scan : Jurnal Teknologi Informasi dan Komunikasi Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Register: Jurnal Ilmiah Teknologi Sistem Informasi EMITTER International Journal of Engineering Technology Jurnal Inspiration Briliant: Jurnal Riset dan Konseptual Journal of Development Research Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi INTEGER: Journal of Information Technology Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal ULTIMATICS MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Explore IT : Jurnal Keilmuan dan Aplikasi Teknik Informatika Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) CCIT (Creative Communication and Innovative Technology) Journal SPIRIT ILKOMNIKA: Journal of Computer Science and Applied Informatics Indonesian Journal of Electrical Engineering and Computer Science Jurnal Teknik Informatika (JUTIF) Journal of Technology and Informatics (JoTI) Melek IT: Information Technology Journal Jurnal Nasional Teknik Elektro dan Teknologi Informasi Journal Research of Social Science, Economics, and Management Sewagati Jurnal Indonesia : Manajemen Informatika dan Komunikasi
Claim Missing Document
Check
Articles

A comparative study of finger vein recognition by using Learning Vector Quantization Hardika Khusnuliawati; Chastine Fatichah; Rully Soelaiman
IPTEK Journal of Proceedings Series No 2 (2017): The 2nd Internasional Seminar on Science and Technology (ISST) 2016
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (871.019 KB) | DOI: 10.12962/j23546026.y2017i2.2311

Abstract

Abstract¾ This paper presents a comparative study of finger vein recognition using various features with Learning Vector Quantization (LVQ) as a classification method. For the purpose of this study, two main features are employed: Scale Invariant Feature Transform (SIFT) and Local Extensive Binary Pattern (LEBP). The other features that formed LEBP features: Local Multilayer Binary Pattern (LmBP) and Local Directional Binary Pattern (LdBP) are also employed. The type of images are also become the base of comparison. The SIFT features will be extracted from two types of images which are grayscale and binary images. The feature that have been extracted become the input for recognition stage. In recognition stage, LVQ classifier is used. LVQ will classify the images into two class which are the recognizable images and non recognizable images. The accuracy, false positive rate (FPR), and true positive rate (TPR) value are used to evaluate the performance of finger vein recognition. The performance result of finger vein recognition becomes the main study for comparison stage. From the experiments result, it can be found which feature is the best for finger vein reconition using LVQ. The performance of finger vein recognition that use SIFT feature from binary images give a slightly better result than uisng LmBP, LdBP, or LEBP feature. The accuracy value could achieve 97,45%, TPR at 0,9000 and FPR at 0,0129.  
Software Fault Prediction Using Filtering Feature Selection in Cluster-Based Classification Fachrul Pralienka Bani Muhamad; Daniel Oranova Siahaan; Chastine Fatichah
IPTEK Journal of Proceedings Series No 1 (2018): 3rd International Seminar on Science and Technology (ISST) 2017
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (203.209 KB) | DOI: 10.12962/j23546026.y2018i1.3508

Abstract

The high accuracy of software fault prediction can help testing effort and improving software quality. Previous researchers had proposed the combination of Entropy-Based Discretization (EBD) and Cluster-Based Classification (CBC). However, the irrelevant and redundant features in software fault dataset tend to decrease the prediction accuracy value. This study proposes improvement of CBC outcomes by integrating filtering feature selection methods. Filtering feature selection methods that will be integrated with CBC i.e. Information Gain (IG), Gain Ratio (GR), and One-R (OR). Based on the research using 2 datasets NASA public MDP (i.e. PC2 and PC3), the result shows that the combination of CBC and IG yields the best average accuracy value compared to GR and OR. It generates 67.52% average of probability detection (pd) and 37.42% average of probability false alarm (pf). While CBC without feature selection yields 65.38% average pd and 49.95% average pf. It can be concluded that IG can improve CBC outcomes by increasing 2.14% average pd and reducing 12.53% average pf
Penandaan Otomatis Tempat Parkir Menggunakan YOLO Untuk Mendeteksi Ketersediaan Tempat Parkir Mobil Pada Video CCTV Evan Tanuwijaya; Chastine Fatichah
BRILIANT: Jurnal Riset dan Konseptual Vol 5, No 1 (2020): Volume 5 Nomor 1, Februari 2020
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (456.197 KB) | DOI: 10.28926/briliant.v5i1.434

Abstract

Sulitnya menemukan tempat parkir terutama saat jam sibuk adalah masalah yang umum dialami oleh pengemudi. Banyak penelitian untuk mendeteksi ketersediaan tempat parkir memanfaatkan CCTV. Namun, penelitian tersebut memiliki beberapa masalah seperti mendeteksi tempat parkir dilakukan secara manual menjadi tidak efisien ketika diterapkan pada tempat parkir yang berbeda. Oleh karena itu, penelitian ini menggunakan YOLO V3 untuk mendeteksi secara otomatis tempat parkir pada data CCTV kemudian diklasifikasikan terisi atau tidak. Hasil terbaik penandaan menggunakan YOLO V3 yaitu saat kondisi cuaca mendung dengan nilai akurasi rata-rata 94,49%.
Pengenalan Wajah Menggunakan Two Dimensional Linear Discriminant Analysis Berbasis Optimasi Feature Fusion Strategy Sahmanbanta Sinulingga; Chastine Fatichah; Anny Yuniarti
JATISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol 3 No 1 (2016): JATISI SEPTEMBER 2016
Publisher : Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM) STMIK Global Informatika MDP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (619.761 KB) | DOI: 10.35957/jatisi.v3i1.59

Abstract

The era of technology today,, research on biometric image is not common to do. One well researched biometric image is a face recognition (face recognition). Problems on the human face recognition is a diversity of features or shape between one another face to face. Therefore, the need for facial feature extraction and classification using a particular method so that the classification can be recognized correctly.In this study proposed feature extraction method that can overcome the problems of non-linear automatic data contained in the face image, called the Two Dimensional Linear Discriminant Analysis based on Feature Fusion Strategy (TDLDA-FFS). Not stopping on feature extraction, classification methods proposed also faces that can overcome the problems of the adaptive matrix which aims to study the benefit of weight on each - each input with the method Relevanced Generalized Learning Vector quantization (GRLVQ).This research integrates methods TDLDA-FFS and GRLVQ for face recognition. With the combination of both methods are proven to provide optimal results with a level of recognition accuracy ranged between 77.78% to 82.22% with a pilot using a databaseof facial images from the Institute of Business and Information Stikom Surabaya. While the test uses a database derived from YaleB Database achieve accuracy levels ranging from 88.89% to 94.44%.
IMPLEMENTASI FITUR GEOMETRI DAN K-MEANS PADA PERHITUNGAN DAN SEGMENTASI SEL DARAH MERAH BERTUMPUK Faried Effendy; Chastine Fatichah; Diana Purwitasari
Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer Vol 9, No 3 (2014): Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer
Publisher : Mulawarman University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (550.548 KB) | DOI: 10.30872/jim.v9i3.173

Abstract

Segmentasi terhadap sel darah merah bertumpuk bertujuan untuk meningkatkan akurasi perhitungan sel darah merah. Tujuan penelitian ini adalah untukmensegmentasi sel darah merah bertumpuk menggunakan morfologi, fitur geometri dan k-means. Morfologi digunakan untuk preprocessing yakni memisahkan sel darah merah dengan backgroundyang tidak diperlukan seperti sel darah putih dan platelet, fitur geometri berupa eksentrisitas dan luasan digunakan sebagai pendeteksi sel darah merah bertumpuk, sedangkan proses segmentasi dilakukan oleh k-means. Akurasi hasil segmentasi dari metode yang diusulkan mencapai 96,31%, sedangkan error perhitungan sel darah merah setelah dilakukan segmentasi berkisar 2,43%.
Cross-Domain Topic Learning Berbasis Frase untuk Pemodelan Topik pada Rekomendasi Kolaborasi Penelitian Vit Zuraida; Diana Purwitasari; Chastine Fatichah
INTEGER: Journal of Information Technology Vol 3, No 2 (2018)
Publisher : Fakultas Teknologi Informasi Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.integer.2018.v3i2.255

Abstract

Rekomendasi kolaborasi penelitian antardomain dapat diperoleh melalui dokumen publikasi ilmiah seperti judul, abstrak, dan bibliografi. Oleh karena itu, proses ekstraksi topik riset dari seorang peneliti merupakan tahapan penting. Model topik berbasis kata belum dapat merepresentasikan topik dengan baik sebab urutan kata pada dokumen tidak diperhitungkan. Penelitian ini mengusulkan sistem rekomendasi kolaborasi antardomain dengan metode Cross-Domain Topic Learning (CTL) Berbasis Frase. CTL Berbasis Frase terdiri dari tiga fase utama: (1) transformasi dokumen dari format bag-of-words menjadi bag-of-phrases, (2) pemodelan topik terhadap frase yang sudah dibentuk untuk mengetahui distribusi probabilitas keterkaitan peneliti dengan topik, (3) perangkingan rekomendasi kolaborasi dengan random walk with restart. Pengujian sistem terhadap domain Visualization dan Data Mining pada dataset  AMiner menunjukkan bahwa CTL Berbasis Frase lebih baik daripada CTL berbasis kata. Terdapat pengingkatan nilai precision sebesar ±10% pada 10 rekomendasi teratas dan ±5% pada 20 rekomendasi teratas.
Pencarian Question-Answer Menggunakan Convolutional Neural Network Pada Topik Agama Berbahasa Indonesia Rizqa Raaiqa Bintana; Chastine Fatichah; Diana Purwitasari
Ultimatics : Jurnal Teknik Informatika Vol 10 No 1 (2018): Ultimatics : Jurnal Teknik Informatika
Publisher : Faculty of Engineering and Informatics, Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2494.968 KB) | DOI: 10.31937/ti.v10i1.842

Abstract

Community-based question answering (CQA) is formed to help people who search information that they need through a community. One condition that may occurs in CQA is when people cannot obtain the information that they need, thus they will post a new question. This condition can cause CQA archive increased because of duplicated questions. Therefore, it becomes important problems to find semantically similar questions from CQA archive towards a new question. In this study, we use convolutional neural network methods for semantic modeling of sentence to obtain words that they represent the content of documents and new question. The result for the process of finding the same question semantically to a new question (query) from the question-answer documents archive using the convolutional neural network method, obtained the mean average precision value is 0,422. Whereas by using vector space model, as a comparison, obtained mean average precision value is 0,282. Index Terms—community-based question answering, convolutional neural network, question retrieval
DETEKSI WILAYAH CAHAYA INTENSITAS TINGGI PADA CITRA DAUN MANGGA UNTUK KLASIFIKASI JENIS POHON MANGGA Eko Prasetyo; R. Dimas Adityo; Nanik Suciati; Chastine Fatichah
Seminar Nasional Teknologi Informasi Komunikasi dan Industri 2017: SNTIKI 9
Publisher : UIN Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (537.616 KB)

Abstract

Masalah yang dihadapi pada citra daun mangga hasil akuisisi dalam klasifikasi jenis pohon mangga adalah adanya wilayah dalam citra yang terpapar cahaya tinggi. Jika wilayah ini tergabung dalam wilayah pembangkitan fitur warna dan tekstur maka nilai fitur yang dibangkitkan dapat terdistorsi dari hasil yang benar. Untuk menghindari masalah tersebut maka wilayah ini harus dipisahkan. Untuk mendeteksi wilayah cahaya intensitas tinggi penulis menggunakan dua threshold yang dikembangkan dari threshold T. Threshold T didapatkan dengan metode Otsu. Nilai threshold atas (Ta) didapat dengan menaikkan nilai T beberapa persen. Nilai threshold bawah (Tb) didapat dengan menurunkan nilai T beberapa persen. Dalam penelitian ini, penulis menggunakan Saturation sebagai basis deteksi, karena merupakan komponen yang memberikan informasi kekuatan warna yang dipengaruhi oleh cahaya. Nilai piksel rendah pada komponen ini menyatakan pengaruh cahaya yang tinggi. Dari hasil uji coba 30 citra, rata-rata dua nilai threshold, Ta dan Tb, masing-masing Ta = 0.9T atau T-10%T dan Tb = 1.7T atau T+70%T. Hasil yang didapatkan dari penelitian ini adalah wilayah intensitas tinggi pada citra daun mangga dapat dideteksi dengan cukup baik. Kinerja recall 0.78, ini berarti ada sekitar 22% wilayah yang gagal dideteksi, sedangkan precision 0.57 berarti sekitar 43% piksel bukan intensitas tinggi yang terdeteksi.
SEGMENTASI PENYAKIT PADA CITRA DAUN TEBU MENGGUNAKAN METODE HYBRID ARTIFICIAL BEE COLONY - FUZZY C MEANS Mustika Mentari; R.V Hari Ginardi; Chastine Fatichah

Publisher : Program Studi Teknik Informatika, Fakultas Teknik, Universitas Yudharta Pasuruan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Otomatisasi sistem untuk mendeteksi penyakit pada tanaman tebu perlu dilakukan untuk mempercepat penanganan penyakit yang mengakibatkan penurunan produktivitas. Informasi penyakit dari ahli seringkalimembutuhkan banyak waktu dan biaya sehingga terjadi keterlambatan penanganan penyakit.  Untuk itusebagai penanganan awal diperlukan adanya deteksi penyakit pada daun tebu secara otomatis. Penelitianini bertujuan untuk membuat sistem otomatis untuk segmentasi citra daun tebu berpenyakit dengan metodeHybrid Artificial Bee Colony (ABC) - Fuzzy C Means (FCM). Penelitian ini memiliki beberapa tahapan yaitupreprocessing yang memisahkan bagian daun dengan background serta menghilangkan tulang daun yangtidak digunakan dalam penelitian ini, pemilihan region of interest, ekstraksi fitur, dan segmentasi. Citra yangdiproses menggunakan pemilihan ROI yang menunjukan dominasi area penyakit pada daun menggunakanoverlapping window seluas 100x100 pixel. ROI tersebut kemudian dilanjutkan pada proses segmentasimenggunakan ABC-FCM. Metode segmentasi yang diusulkan mampu menunjukkan rata-rata akurasi yangtinggi, yaitu sebesar 91%. Segmentasi menggunakan metode ABC-FCM menunjukkan hasil yang baik daripada menggunakan metode FCM saja.
TEKNIK GENETIC MODIFIED K-NEAREST NEIGHBOR UNTUK ESTIMASI HASIL PRODUKSI GULA TEBU BERDASARKAN NILAI KLOROFIL DAUN TEBU Siti Mutrofin; R. V. Hari Ginardi; Chastine Fatichah

Publisher : Program Studi Teknik Informatika, Fakultas Teknik, Universitas Yudharta Pasuruan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (587.558 KB)

Abstract

Pada umumnya, taksasi (estimasi) hasil produksi gula didasarkan pada luas area, masa tanam, faktor panjang leng, jumlah batang/leng, tinggi batang, bobot batang, dan rendemen. Faktor rendemen sangatberpengaruh terhadap kualitas gula (manis atau tidak), sedangkan faktor yang lain hanya mempengaruhikuantitas gula. Salah satu tolak ukur produksi gula maupun rendemen dapat dilihat dari nilai klorofil dauntebu. Klorofil juga memiliki peranan yang sangat penting bagi proses fotosintesis. Untuk itu, dalampenelitian taksasi produksi gula tebu ini didasarkan pada nilai klorofil daun tebu. Dalam penelitian ini,performa algoritma Modified k-Nearest Neighbor (MKNN) ditingkatkan dengan cara mengoptimalkan nilaik dengan menggunakan algoritma genetika, yang selanjutnya algoritma tersebut dinamakan denganalgoritma Genetic Modified K-Nearest Neighbor (GMKNN). Tujuan dari penelitian ini adalah GMKNNsebagai algoritma baru digunakan untuk melakukan estimasi hasil produksi gula tebu berdasarkan nilaiklorofil daun tebu. Dari sejumlah uji coba, terbukti bahwa klorofil (Model2) dapat digunakan untukmelakukan taksasi, walaupun memiliki hasil yang kurang baik dibandingkan ketika tidak menggunakanklorofil (Model1). Model2 unggul pada percobaan dengan menggunakan 95 data, Model2 juga terbuktimemiliki perbedaan yang signifikan dberdasarkan uji T. Kinerja algoritma GMKNN lebih baik dari padaMKNN dengan nilai MSE terkecil sebesar 3737 pada percobaan dengan menggunakan 95 data, dan MSEterbesar sebesar 2053730 pada percobaan dengan menggunakan 201 data, namun GMKNN juga memilikikekurangan, yaitu komputasi tinggi, terjebak pada optimum lokal, sedangkan kekurangan MKNN adalahpenentuan nilai ambang batas dalam mendapatkan nilai similaritas antar data latih yang masih manualpada kasus estimasi.
Co-Authors Achmad Arwan Adhi Nurilham Aditya Bagusmulya, Aditya afrizal laksita akbar, afrizal laksita Agung Prasetya Agus Subhan Akbar, Agus Subhan Agus Zainal Arifin Agus Zainal Arifin Ahmad Hayam Brilian, Ahmad Hayam Ahmad Saikhu Ahmad Syauqi Ahmad Syauqi Aini, Nuru Ainul Mu'alif Akwila Feliciano Akwila Feliciano Amalia Nurani Basyarah Amelia Devi Putri Ariyanto Andika Pratama Anisa Nur Azizah Anna Kholilah Anny Yuniarti Ardian Yusuf Wicaksono Ariana Yunita Arianto Wibowo Arif Sanjani, Lukman Ario Bagus Nugroho Arisa, Nursanti Novi Arya Yudhi Wijaya Aryo Harto, Aryo Asmawati, Diah Ayu Ismi Hanifah Benny Afandi Bilqis Amaliah Bramantya, Amirullah Andi Budi Pangestu Cahyaningtyas, Zakiya Azizah Christian Sri kusuma Aditya, Christian Sri kusuma Daniel Oranova Siahaan Daniel Sugianto Daniel Swanjaya Darlis Heru Murti Darlis Herumurti Davin Masasih Deni Sutaji Desmin Tuwohingide Dewi Rosida Dhimas Pamungkas Wicaksono Diana Purwitasari Diana Purwitasari Diema Hernyka Satyareni Dimas Renggana, Christiant Dini Adni Navastara, Dini Adni Djoko Purwanto Dwi Kristianto Dwi Taufik Hidayat edy susanto Eha Renwi Astuti Eka Prakarsa Mandyartha Eka Prakarsa Mandyartha Eko Prasetyo Esa Prakasa Evan Tanuwijaya Evelyn Sierra Evy Kamilah Ratnasari Fabroyir, Hadziq Fachrul Pralienka Bani Muhamad Fachrul Pralienka Bani Muhamad Faida Royani Faizin, Muhammad 'Arif Fajar Baskoro Fajar, Aziz Fajrin, Ahmad Miftah Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Farosanti, Lafnidita FATRA NONGGALA PUTRA Febri Liantoni Febri Liantoni, Febri Febriani, Kristina Fiqey Indriati Eka Sari Furqan Aliyuddien Ginardi, R.V. Hari Ginardi, Raden Venantius Hari Gou Koutaki Handayani Tjandrasa Haniefardy, Addien Haq, Dina Zatusiva Hardika Khusnuliawati Hardika Khusnuliawati Hari Ginardi Hendra Mesra hidayat, dwi taufik Hilya Tsaniya I Ketut Eddy Purnama Ilmi, Akhmad Bakhrul Imam Artha Kusuma Imamah Imamah Irfan Subakti, Misbakhul Munir Irzal Ahmad Sabilla Isye Arieshanti Ivan Agung Pandapotan Izzi, Mambaul Jayanti Yusmah Sari Johan Varian Alfa Junaidi Junaidi Keiichi Uchimura Kevin Christian Hadinata Kevin Christian Hadinata Kusuma, Selvia Ferdiana Lukman Hakim M Rahmat Widyanto M. Rahmat Widyanto Machfud, M. Mughniy Mafazy, Muhammad Meftah Mamluatul Hani’ah Maulana, Avin Maulani, Irham Maulidiya, Erika Mauridhi Hery Purnomo Mirza Galih Kurniawan, Mirza Galih Moch Zawaruddin Abdullah Mohammad Sholik Muhamad, Fachrul Pralienka Bani Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Muharrom Al Haromainy Muhammad Riduwan Muhtadin Mustika Mentari Mutmainnah Muchtar Nafiiyah, Nur Nanik Suciati Nanik Suciati Narandha Arya Ranggianto Nazarrudin, Ahmad Ricky Nenden Siti Fatonah Nenden Siti Fatonah Nur Hayatin Nur Nafi’iyah Nur Nafi’iyah Nurilham, Adhi Nurina Indah Kemalasari Nursuci Putri Husain Nurwijayanti nuzula, Muhammad Iqbal firdaus Pradany, Latifa Nurrachma Priambodo, Anas Rachmadi Putra, Ramadhan Hardani R Dimas Adityo R. Dimas Adityo R. V. Hari Ginardi R.V Hari Ginardi R.V. Hari Ginardi Rachmad Abdullah Rahayu, Putri Nur Ramadhan Rosihadi Perdana Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Kartika Dewi Rendra Dwi Lingga P. Riyanarto Sarno Rizal A Saputra Rizal A Saputra, Rizal A Rizal Setya Perdana Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Raaiqa Bintana Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Safhira Maharani Safhira Maharani Sahmanbanta Sinulingga Salim Bin Usman Salim Bin Usman Sambodho, Kriyo Santoso, Bagus Jati Sarimuddin, Sarimuddin Septiyan Andika Isanta Setyawan, Dimas Ari Sherly Rosa Anggraeni Sherly Rosa Anggraeni Shofiya Syidada Siti Mutrofin Siti Mutrofin Siti Rochimah Subali, Made Agus Putra Subhan Nooriansyah Subkhi, M. Bahrul Sudianjaya, Nella Rosa Suhariyanto Suhariyanto Surya Sumpeno Susanti, Martini Dwi Endah Syah Dia Putri Mustika Sari Sylvi Novita Dewi Tanzilal Mustaqim Tesa Eranti Putri Tsaniya, Hilya Tursina, Dara Tuwohingide, Desmin Umi Laily Yuhana, Umi Laily Umy Rizqi Vit Zuraida Wahyu Saputra, Vriza Wattiheluw, Fadli Husein Welly Setiawan Limantoro Wibowo, Prasetyo Wijoyo, Satrio Hadi Wilda Imama Sabilla Yoga Yustiawan Yosi Kristian Yudhi Purwananto Yuhana, Umi Laili Yuita Arum Sari Yulia Niza Yulia Niza Yunan Helmi Mahendra, Yunan Helmi Yuslena Sari, Yuslena Yuwanda Purnamasari Pasrun Zaenal Arifin, Agus Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas