The number of motorcycles on the report of Indonesian BPS statistics from the Indonesian State Police between 2019 to 2021 by its type has increased annually. Routine motorcycle checks, services, and maintenance are essential to keep a motorcycle in good condition and more durable; therefore, buying spare parts is enlarged in line with the growth of public motorcycle ownership. The necessity of buying spare parts increases with the growth of public motorcycle ownership. Numerous stores in Ngawi offer motorcycle spare parts and check services for routine motorcycle maintenance. One of these stores is BM Motor. To develop an effective product-selling strategy, it is essential to forecast the daily turnover of the shop. To achieve this, the present research aims to analyze the daily turnover using Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM). These methods were applied to a time-series dataset, allowing for an in-depth examination of the patterns and trends in the shop's turnover. The research compares several hyperparameter tunings and scenarios to optimize the models that forecast daily turnover data at the store. The outcomes presented that the LSTM model achieved a lesser MAE score of 0.087, while the RNN model scored 0.092. These findings proved that the LSTM model achieved lower MAE than the RNN model, it means LSTM is more accurate than the RNN model.