p-Index From 2021 - 2026
4.468
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Majalah Ilmiah Teknologi Elektro Jurnal Teknik ITS IPTEK The Journal for Technology and Science Semantik TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Kursor Jurnal Teknologi Informasi dan Ilmu Komputer Setrum : Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer agriTECH Scientific Journal of Informatics Seminar Nasional Informatika (SEMNASIF) EMITTER International Journal of Engineering Technology Proceeding of the Electrical Engineering Computer Science and Informatics JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Journal of Information Technology and Computer Science Jurnal Sains Dan Teknologi (SAINTEKBU) Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Jurnal Inotera Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) CCIT (Creative Communication and Innovative Technology) Journal JAVA Journal of Electrical and Electronics Engineering JAREE (Journal on Advanced Research in Electrical Engineering) Jurnal Nasional Teknik Elektro dan Teknologi Informasi Makara Journal of Technology Jurnal Rekayasa elektrika Majalah Ilmiah Teknologi Elektro
Claim Missing Document
Check
Articles

DESIGN OF ARTIFICIAL NEURAL NETWORK SOFTWARE FOR PREDICTING THE HEALTH GRADE IN A TELEPHONE EXCHANGE Wiratmoko Yuwono; Yodik Iwan Herlambang; Mauridhi Hery Purnomo; Prima Kristalina
SAINTEKBU Vol 1 No 1 (2008)
Publisher : KH. A. Wahab Hasbullah University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (209.235 KB) | DOI: 10.32764/saintekbu.v1i1.32

Abstract

Application of artificial neural network software ( ANN ) has been implemented forpredicting many thing and replace the conventional ways of predicting method using linearregression. Back Propagation algorithm can be used to reach the result of the program thatcan predict the telephone exchange health grade according to the data that has beenrecorded before. By predicting each parameter that has correlation to the telephoneexchange health grade, we can predict the telephone exchange health grade in the nextperiod.Kata kunci : jaringan syaraf tiruan, propagasi balik, nilai kesehatan sentral.
Deteksi Gerak Otot Frontalis Berbasis Citra 3 Dimensi Menggunakan Gray Level Co-Occurrence Matrix (GLCM) Hardianto Wibowo; Mauridhi Hery Purnomo; Eko Mulyanto Yuniarno
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol 1, No 2, August-2016
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (707.04 KB) | DOI: 10.22219/kinetik.v1i2.25

Abstract

Ekspresi wajah atau mimik merupakan salah satu dari hasil gerak otot pada wajah. Dalam kamus besar bahasa Indonesia, ekspresi merupakan pengungkapan atau proses menyatakan, yaitu memperlihatkan atau menyatakan maksud, gagasan perasaan dan lain sebagainya. Ekspresi wajah atau mimik dipengaruhi oleh saraf tujuh atau nervuse facialis. Facial Action Coding System (FACS) standardiasi ekspresi dalam format pergerakan enam ekspresi dasar, yaitu bahagia, sedih, terkejut, takut, marah dan jijik. Dalam otot, bahwa setiap otot yang bergerak pasti terjadi kontraksi, dan pada saat terjadi kontraksi, otot akan mengembang atau menggelembung. Otot dibagai menjadi tiga bagian, yaitu origo dan insersio sebagai ujung otot dan belly sebagai titik tengah otot, jadi setiap terjadi gerakkan maka otot bagian belly akan mengembang atau menggelembung. Teknik pengambilan data yaitu dengan merekam data dalam bentuk 3D, setiap terjadi kontraksi maka otot bagian belly akan menggelembung dan data inilah yang akan diolah dan dibandingkan. Dari pengolahan data ini akan didapat kekuatan maksimum kontraksi yang akan dipakai sebagai acuan untuk besaran pergeseran otot khususnya pada otot frontalis. Dalam deteksi pergerakan akan menggunakan metode Gray Level Co-occurrence Matrix (GLCM), dan akan didapatkan pula besaran pergeseran otot secara maksimal. Dari hasil pengujian didapatkan nilai pergeseran pergerakan otot sebesar 2.928.
Lung Nodule Detection of CT and Image-Based GLCM and RLM CT Scan Using the Support Vector Machine (SVM) Method Zaimah Permatasari; Mauridhi Hery Purnomo; I Ketut Eddy Purnama
JAREE (Journal on Advanced Research in Electrical Engineering) Vol 5, No 2 (2021): October
Publisher : Department of Electrical Engineering ITS and FORTEI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/jaree.v5i2.125

Abstract

Lung cancer is the most common cause of cancer death globally. Early detection of lung cancer will greatly beneficial to save the patient. This study focused on the detection of lung cancer using classification with the Support Vector Machine (SVM) method based on the features of Gray Level Co-occurrence Matrices (GLCM) and Run Length Matrix (RLM). The lung data used were obtained from the Cancer imaging archive Database, consisting of 500 CT images. CT images were grouped into 2 clusters, including normal and lung cancer. The research steps include: image processing, region of interest segmentation, and feature extraction. The results indicate that the system can detect the CT-image of SVM classification where the default parameter only provides an accuracy of 85.63%. It is expected that the results will be useful to help medical personnel and researchers to detect the status of lung cancer. These results provide information that detection of lung nodules based on GLCM and RLM features that can be detected is better. Furthermore, selecting parameters C and γ on SVM. Keywords: cancer, nodule, support vector machine (SVM).
Analisis Pendapat Masyarakat terhadap Berita Kesehatan Indonesia menggunakan Pemodelan Kalimat berbasis LSTM Esther Irawati Setiawan; Adriel Ferdianto; Joan Santoso; Yosi Kristian; Gunawan Gunawan; Surya Sumpeno; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 1: Februari 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1263.215 KB) | DOI: 10.22146/jnteti.v9i1.115

Abstract

The uncertainty of health news content, which is spread on social media, raises the need for validation of the truth. One validation approach is to consider the opinion or attitudes of most people, which is called a stance on a topic, whether they support, oppose, or being neutral. This paper proposes a stance analysis model to classify the relationship between sentences so that it can recognize the correlation of the opinion of the writer in the headline of the problem claim. The proposed model uses several Long Short-Term Memory (LSTM), which represent the interrelationship of news for analysis of the relationship between a claim with other news. The formation of word representation vectors is carried out in conjunction with LSTM-based stance classification training. Sentence embedding is done to get the vector representation of sentences with LSTM. Each word in a sentence occupies one time-step in LSTM and the output of the last word is taken as a sentence representation. Based on the results of trials with the Indonesian health-related dataset that was built for this study, the proposed stance classification model was able to achieve an average F1-score value of 71%, with the supporting value 69%, opposing as much as 70%, and neutral 74%.
Fuzzy Multi-Attribute Decision Making untuk Klasifikasi Potensi Kewirausahaan Berdasarkan Theory of Planned Behavior Nova Rijati; Diana Purwitasari; Surya Sumpeno; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 1: Februari 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1404.119 KB) | DOI: 10.22146/jnteti.v9i1.118

Abstract

Indonesia government has launched a program to encourage youth entrepreneurship as a strategy to improve national economy. This paper proposes a method to find an entrepreneurial potential based on academic behavior features that are extracted from the Higher Education Database PDDikti. The proposed approach applies the Fuzzy Multi-Attribute Decision Making (FMADM) technique. Rules for extracting features of student academic behavior were following Theory of Planned Behavior (TPB) and resulting in 14 features. The FMADM model combines Fuzzy Simple Additive Weighting and Fuzzy Technique for Order Preference by Similarity to Ideal Solution, which is called FSAW-TOPSIS. Friedman Test demonstrated that FSAW-TOPSIS gives more optimal solution with the highest Mean Rank of the potential entrepreneurial value of 2.96. Besides, through Hamming Distance Test, FSAW-TOPSIS results the best order with a 98% percentage and ranking of the smallest Squared Error of 0.3%, which makes the proposed model offered a better solution. It can be concluded that using TPB variables in PDDikti environment with FSAW-TOPSIS technique provides an optimal recommendation on student entrepreneurship potential, which can be used as a part of a decision-making system for higher education management.
Kinerja Micro Grid Menggunakan Photovoltaic-Baterai dengan Sistem Off-Grid Adhi Kusmantoro; Ardyono Priyadi; Vita Lystianingrum Budiharto Putri; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 2: Mei 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1149.52 KB) | DOI: 10.22146/jnteti.v9i2.155

Abstract

Renewable energy based micro grid planning is perfect for delivering electricity to rural areas, as an uninterruptible resource. In this paper, a DC micro grid system is designed. The system consists of several PVs and batteries which are connected to each other through a network. PV grids A and C deliver 1,904 watts of power in the micro grid system, while the battery contributes 784 watts of power. The system has a load of 730 watts. The purpose of this study is to improve the performance of micro grid with off-grid systems. The performance of the designed system is quite good because there sources of the grid A and grid C systems are sufficient to meet load demands and to charge batteries. When solar radiation is low, the battery meets load demands. To make the system more reliable, although it will increase system costs, a battery with a larger capacity can be used. The proposed system maintains the voltage at 12V with a change of only ± 10%.
Asesmen ECG-Apnea Satu Sadapan untuk Peningkatan Akurasi Klasifikasi Gangguan Tidur Berdasarkan AdaBoost Iman Fahruzi; I Ketut Eddy Purnama; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 2: Mei 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1548.913 KB) | DOI: 10.22146/jnteti.v9i2.159

Abstract

Sleep disorder is a disturbed breathing flow (collapse) during sleep. The symptoms are generally undiagnosed and untreated properly so that repeated respiratory interruptions have the potential for severe sleep disorders. Electrocardiogram (ECG) recordings are practical tools used to examine the existence of sleep disorders in the heart rhythm. The ECG represents heart electrical activity in the form of P, QRS, and T waves. The number of ECG sensors is uncomfortable for the patient to record the data, increasing the recording complexity, slowing the computation, causing misinterpretation and loss of clinical information. Therefore, an early warning system is needed as a medical aid that can be diagnosed using single-lead ECG. In conducting this study, the system consists of five stages, which include the acquisition of ECG records, pre-processing, extraction of features, selection of features, and the classification process. ECG-record feature sets consist of time-domain, frequency-domain, and non-linear analysis. The AdaBoost method confirms that the model had the highest performance than the SVM, k-NN and NN. The results of the experiments thus measure the outperformed of method performance and achieved 90.1% classification accuracy for the AdaBoost classification method. Moreover, the F1 score, precision, recall, sensitivity, and specificity was reported as 90.1%, 90.3%, 90.1%, 86.9%, and 93.3%, respectively.
Kombinasi Fitur Multispektrum Hilbert dan Cochleagram untuk Identifikasi Emosi Wicara Agustinus Bimo Gumelar; Eko Mulyanto Yuniarno; Wiwik Anggraeni; Indar Sugiarto; Andreas Agung Kristanto; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 2: Mei 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1364.227 KB) | DOI: 10.22146/jnteti.v9i2.166

Abstract

In social behavior of human interaction, human voice becomes one of the means of channeling mental states' emotional expression. Human voice is a vocal-processesed speech, arranged with word sequences, producing the speech pattern which able to channel the speakers' psychological condition. This pattern provides special characteristics that can be developed along with biometric identification process. Spectrum image visualization techniques are employed to sufficiently represent speech signal. This study aims to identify the emotion types in the human voice using a feature combination multi-spectrum Hilbert and cochleagram. The Hilbert spectrum represents the Hilbert-Huang Transformation(HHT)results for processing a non-linear, non-stationary instantaneous speech emotional signals with intrinsic mode functions. Through imitating the functions of the outer and middle ear elements, emotional speech impulses are broken down into frequencies that typically vary from the effects of their expression in the form of the cochlea continuum. The two inputs in the form of speech spectrum are processed using Convolutional Neural Networks(CNN) which best known for recognizing image data because it represents the mechanism of human retina and also Long Short-Term Memory(LSTM)method. Based on the results of this experiments using three public datasets of speech emotions, which each of them has similar eight emotional classes, this experiment obtained an accuracy of 90.97% with CNN and 80.62% with LSTM.
Klasifikasi Interaksi Kampanye di Media Sosial Menggunakan Naïve Bayes Kernel Estimator Aryo Nugroho; Rumaisah Hidayatillah; Surya Sumpeno; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 8 No 2: Mei 2019
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1083.466 KB)

Abstract

The development of technology also influences changes in campaign patterns. Campaign activities are part of the process of Election of Regional Heads. The aim of the campaign is to mobilize public participation, which is carried out directly or through social media. Social media becomes a channel for interaction between candidates and their supporters. Interactions that occur during the campaign period can be one indicator of the success of the closeness between voters and candidates. This study aims to get the pattern of campaign interactions that occur on Twitter social media channels. This interaction pattern is classified as a model in measuring the success of campaigns on social media. The research begins with obtaining data through the data retrieval process using the API feature provided by Twitter. Furthermore, pre-processing is carried out before data can be processed in an algorithmic method. This stage is done to improve data quality so as to improve accuracy. Naive Bayes Classifier was chosen because of a simple procedure, then Kernel Estimator (KE) was used to improve performance. The use of naive Bayes Kernel Estimator can improve model performance from 76.74% to 80.14%. Testing models with split percentage methods on several combinations get satisfactory results.
Peningkatan Akurasi Segmentasi Tulang Femur dan Tibia pada Citra Radiograf Menggunakan AASM Rima Tri Wahyuningrum; I Ketut Eddy Purnama; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 8 No 2: Mei 2019
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1230.059 KB)

Abstract

Osteoarthritis (OA) is a joint disease that affects a large part of the elderly population. One of the OA that is often experienced by patients is knee OA. To determine the development and classification of this disease, a process of segmenting the femur and tibia is needed quickly and accurately. Meanwhile, manual segmentation has several disadvantages including the longer time needed and the difference in the results of reading x-ray images between medical personnel with each other. Therefore, in this paper, an Adaptive Active Shape Model (AASM) is presented for femur and tibia segmentation on knee x-ray images. The purpose of this segmentation is to support the discovery and characterization of imaging biomarkers for the incidence, clinical evaluation, classification, and progression of knee osteoarthritis (OA). This new algorithm is adaptively capable of better segmenting the femur and tibia than the original ASM. In this experiment, 10 images were used as training data to get the mean shape model and 50 images were tested to find out performance of the method implemented. All images are taken randomly from Osteoarthritis Initiative (OAI) dataset. To determinate the accuracy of this segmentation method, calculations have been performed using Hausdorff Distance(HD) and Dice Similarity Coefficient(DSC). In addition, this study have also been compared with previous research (original ASM) and the same data is used. The best average result of the segmentation validation method from 50 test images in the AASM method using HD is 0.2016 for the right tibia femur bone using 43 landmarks and 0.9497 for the DSC. Based on these results, the average increase in accuracy of segmentation validation was 0.29 for HD and 0.33 for DSC. Thus, this method is quite reliable and clinically valuable for monitoring the progression of knee osteoarthritis.
Co-Authors Abdillah, Abid Famasya Adhi Dharma Wibawa Adhi Dharma Wibawa Adhi Dharma Wibawa, Adhi Dharma Adhi Kusmantoro Adi Soeprijanto Adi Soeprijanto Adi Soepriyanto Adi Sutanto Adri Gabriel Sooai Adriel Ferdianto Afandi, Acxel Derian Affan, Lazuardi Yaqub Agung Dewa Bagus Soetiono Agung Mega Iswara Agung Wicaksono Agus Dharma Agustinus Bimo Gumelar Ahmad Muslich Al Kindhi, Berlian Alamsyah Alamsyah - Alfiyan Alfiyan, Alfiyan Ali Sofyan Kholimi Amirullah Amirullah Amrul Faruq Ananto Mukti Wibowo Andi Setiawan Andreas Agung Kristanto, Andreas Agung Ardyono Pribadi Ardyono Priyadi Ardyono Priyadi Arham Arham, Arham Arif Muntasa Arifin Arifin Arik Kurniawati Aris Nasuha Aris Widayati Arman Jaya Arraziqi, Dwi Aryo Nugroho Atris Suyantohadi Atris Suyantohadi Atyanta Nika Rumaksari Atyanta. N. Rumaksari Bambang Purwahyudi Bambang Sujanarko Bambang Suprianto . Bandung Arry Sanjoyo Basuki, Setio Berlian Al Kindhi Bernaridho Hutabarat, Bernaridho Budi Setiyono Budiarti, Rizqi Putri Nourma Cahyadi, Billy Kelvianto Chastine Fatichah Choirina, Priska Darma Setiawan Putra Dedid Cahya Happyanto Dewi Nurdiyah Diah Puspito Wulandari Diana Purwitasari Djoko Purwanto Dwi F. Suyatno Eddy Satriyanto Effendy Hadi Sutanto Eka Dwi Nurcahya Eko M. Yuniarno Eko Mulyanto Eko Mulyanto Yuniarno Eko Mulyanto Yuniarno Elly Purwanti Endang Setyati Endang Sri Rahayu Endi Permata Era Purwanto Esther Irawati Setiawan Evi Septiana Pane Evi Septiana Pane, Evi Septiana F.X. Ferdinandus Fahmi Amiq Fanani, Nurul Zainal Farah Zakiyah Rahmanti Fath, Nifty Feby Artwodini Muqtadiroh Fendik Eko P Fujisawa, Kimiya Gigih Prabowo Glanny M.Christiaan Mangindaan Gregorius Satio Budhi Gunawan Gunawan Gunawan Gunawan H. Hammad, Jehad A. Hans Juwiantho Hardianto Wibowo Hasti Afianti Hendra Kusuma Hermawan, Norma Herti Miawarni Hidayatillah, Rumaisah Hindarto Husna, Farida Amila Hutama Harsono, Nathanael I Ketut Eddy Purnama I Ketut Edy Purnama I Made Gede Sunarya I Made Ginarsa I Nyoman Budiastra Ima Kurniastuti Imam Robandi Iman Fahruzi Indah Agustien Sirajudin Indar Sugiarto Ingrid Nurtanio Isa Hafidz Iwan Setiawan Jehad A. H. Hammad Joan Santoso Joko Pitono Joko Priambodo Juanita, Safitri Ketut Eddy Purnama Khairuddin Karim Khamid Khamid Khamid Khamid Kristian, Yosi Lailatul Husniah Laksana, Eka Purwa Lie Jasa Lilik Anifah Lukman Zaman Lystianingrum, Vita Makoto Chiba Margareta Rinastiti Margo Pujiantara Marselin Jamlaay Marsetio Pramono Meidhy Panginda Saputra Moch Hariadi Moch. Hariadi Moch. Iskandar Riansyah Mochamad Ashari Mochamad Hariadi Mochammad Facta Mochammad Hariadi Moh. Aries Syufagi Mohammad Arie Reza Muhamad Ashari Muhamad Haddin Muhammad Nur Alamsyah Muhammad Reza Pahlawan Muhammad Rivai Muhtadin Mukhammad Aris Muldi Yuhendri Mulyanto, Edy Nazarrudin, Ahmad Ricky Nova Eka Budiyanta Nova Rijati Nugroho, Supeno Nugroho, Supeno Mardi S. Nur Kasan, Nur Nurul Fadillah Nurul Zainal Fanani Oddy Virgantara Putra Ontoseno Penangsang Pratama, Afis Asryullah Priambodo, Joko Prima Kristalina Purnawan, I Ketut Adi Purwadi Agus Darwito Putra Wisnu AS R Dimas Adityo Rachmad Setiawan Radi Radi Rafly Azmi Ulya, Amik Rahmat Rahmat Rahmat Syam Raihan, Muhammad Ratna Ika Putri Rika Rokhana Rima Tri Wahyuningrum Rima Tri Wahyuningrum Riris Diana Rachmayanti Rokhana, Rika Rumaisah Hidayatillah Ruri Suko Basuki Rusmono Yulianto Saidah Saidah Saputra, Daniel Gamaliel Sartana, Bruri Trya SATO Yukihiko Setiawan, Esther Setijadi, Eko Sidharta, Bayu Adjie Sihombing, Drigo Alexander Sirait, Rummi Santi Rama Siti Rochimah Soebagio Soebagio Soebagio Soebagio Soebagio Soebagio Soebagio Soebagio Soetiono, Agung Dewa Bagus Subagio subagio Subuh Isnur Haryudo Sugiyanto - Sujono Sujono Sujono Sulistyono, Marcelinus Yosep Teguh Sumadi, Fauzi Dwi Setiawan Supeno M. S. Nugroho Supeno Mardi Supeno Mardi S. Nugroho Supeno Mardi Susiki Nugroho, Supeno Mardi Surya Sumpeno Sutedjo Sutedjo Syafaah, Lailis Syaiful Imron Tita Karlita Tita Karlita Tri Arief Sardjono Tsuyoshi Usagawa, Tsuyoshi Ulla Delfana Rosiani Umar Umar Vita Lystianingrum Widodo Budiharto Wijayanti . Wiratmoko Yuwono Wiwik Anggraeni Wridhasari Hayuningtyas Yani Prabowo Yodik Iwan Herlambang Yosi Kristian Yoyon Kusnendar Suprapto Yuhana, Umi Laili Yulianto Tejo Putranto Yuni Yamasari Yuniarno, Eko M. Yusron rijal Zaimah Permatasari Zaman, Lukman