Claim Missing Document
Check
Articles

Concept of Triangle: Examples of Mathematical Abstraction in Two Different Contexts Nurhasanah, Farida; Kusumah, Yaya S.; Sabandar, Jozua
International Journal on Emerging Mathematics Education IJEME, Vol. 1 No. 1, March 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (841.424 KB) | DOI: 10.12928/ijeme.v1i1.5782

Abstract

Geometry has abstract notions to be learnt so that all those notions cannot be just transferred into students’ mind like a bunch of information that should be memorized. Students need to construct those concepts during their learning process. This process of knowledge construction can be considered as an abstraction process. This study aimed to qualitatively compare abstraction process of students who learned the topic of triangle in conventional method and in van Hiele model of teaching aided by Geometers’ sketchpad. Subjects of this study were junior high school students in grade 7. This is a qualitative study with grounded theory design. Data were collected through classroom observation, test, and task-based interview. Results of the study show that theoretical abstraction processes tend to dominate classrom with conventional method of teaching while classroom with van Hiele model of teaching aided by Geometers’ sketchpad accommodated empirical abstraction process of the students.
DEFRAGMENTATION THINKING STRUCTURE TO OVERCOME ERRORS IN ADDRESSING MATHEMATICAL PROBLEM Andriani, Siti Puri; Triyanto, Triyanto; Nurhasanah, Farida
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 10, No 1 (2021)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (708.604 KB) | DOI: 10.24127/ajpm.v10i1.3441

Abstract

This research is intended to describe students' procedural errors in solving problems derivative of algebraic functions and efforts to overcome these errors by using the defragmentation process. Error analysis is carried out based on the procedural error theory based on Elbrink which includes the following aspects of errors: 1) Mis-identification; 2) Mis-generalization; 3) Repair Theory; and 4) Overspecialization. The subjects in this study are students of class XII MIPA Islamic State Senior High School (MAN) 3 Tulungagung taken from snowball random sampling. In taking the subject, the researchers select one of the students who make procedural errors by considering the completeness of the students when solving the given problems based on the problem-solving phase according to Polya. Based on the results of this study, it is found that the procedural errors made by the students are repair theory errors and overspecialization.  The defragmenting process to correct these errors is intended to provide dis-equilibration and scaffolding. The results after the defragmenting process are the students can correct their mistakes and the structure of their thinking.Keywords: Defragmenting structure thinking; derivative algebraic functions; problem solving; procedural errors. AbstrakPenelitian ini bertujuan untuk menggambarkan kesalahan prosedural siswa dalam menyelesaikan masalah turunan fungsi aljabar dan upaya untuk mengatasi kesalahan tersebut dengan menggunakan proses defragmenting. Analisis kesalahan dilakukan berdasarkan konsep teori kesalahan prosedural menurut Elbrink yang mencakup aspek kesalahan sebagai berikut: Mis-identificstion; 2) Mis-generalization; 3) Repair Theory; dan 4) Overspecialization. Subjek dalam penelitian ini adalah siswa kelas XII MIPA MAN 3 Tulungagung yang diambil secara snowball  random sampling. Dalam pengambilan subjek dipilih salah satu siswa yang melakukan kesalahan prosedural dengan mempertimbangkan kelengkapan siswa ketika menyelesaikan masalah yang diberikan berdasarkan tahap pemecahan masalah menurut Polya. Dari hasil penelitian ini ditemukan bahwa kesalahan prosedural yang dilakukan siswa ialah kesalahan repair theory dan overspecialization. Proses defragmenting yang dilakukan untuk memperbaiki kesalahan tersebut ialah dengan memberikan dissequillibrasi dan scaffolding. Hasil yang diperoleh setelah proses defragmenting dilakukan ialah siswa mampu memperbaiki kesalahannya dan struktur berpikirnya.Kata kunci: Defragmenting struktur berpikir, kesalahan prosedural, pemecahan masalah, turunan fungsi aljabar.
KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA DITINJAU DARI PERBEDAAN GENDER Lestari, Widi; Kusmayadi, Tri Atmojo; Nurhasanah, Farida
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 10, No 2 (2021)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (635.337 KB) | DOI: 10.24127/ajpm.v10i2.3661

Abstract

Salah satu tujuan pembelajaran matematika adalah agar siswa memiliki kemampuan pemecahan masalah. Penelitian ini bertujuan untuk menganalisis  kemampuan pemecahan masalah siswa ditinjau dari perbedaan gender. Metode penelitian menggunakan penelitian kualitatif. Subjek pada penelitian ini adalah kelas XI TLM A SMK Maarif NU 2 Ajibarang Kab Banyumas. Penentuan sampel menggunakan teknik purposive sampling yaitu dengan pemberian soal pada seluruh siswa kelas XI TLM A. Kemudian diambil 8 siswa sebagai sampel karena memenuhi sesuai indikator  kemampuan pemecahan masalah matematika. Indikator kemampuan pemecahan masalah matematika yang diambil adalah memahami masalah, melaksanakan rencana, merencanakan penyelesaian dan memeriksa proses dan hasil. Hasil penelitian menunjukan bahwa pada tingkat memahami masalah, siswa laki-laki lebih baik dari pada perempuan sehingga siswa laki-laki mampu mencapai tingkat memahami masalah dengan baik sehingga mampu menyebutkan apa yang diketahui dan ditanyakan pada soal dengan jelas. Siswa pada tingkat melaksanakan rencana, Siswa perempuan dan laki-laki pada tingkat ini sudah dapat dikatakan mampu mencapai dengan baik karena terbukti pada jawaban siswa yang menunjukkan bahwa siswa mengaplikasikan apa yang telah guru ajarkan. Siswa pada tingkat merencanakan penyelesaian siswa siswa laki-laki dan perempuan belum mampu menyimpulkan sesuatu yang ada menurut hasil yang telah diketahui maka belum mampu mencapai tingkat merencanakan penyelesaian. Siswa pada tingkat memeriksa proses dan hasil, siswa perempuan lebih mampu mencapai tingkat memeriksa proses dan hasil terbukti dengan ketelitian yang ada pada jawaban siswa. Siswa laki-laki kurang teliti saat menghitung bilangan pada matriks pengurangan.
Pengembangan Media Pembelajaran Bangun Ruang Sisi Datar Adaptif (BARUSIDA) Untuk Meningkatkan Pemahaman Konsep Siswa Tunanetra di Sekolah Inklusi Nashiruddin, Muhammad; Triyanto, Triyanto; Nurhasanah, Farida
Jurnal Penelitian Pendidikan Vol 21, No 3 (2021)
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/jpp.v21i3.39328

Abstract

AbstrakTujuan penelitian ini adalah untuk mengembangkan media pembelajaran geometri bangun ruang adaptif (BARUSIDA) yang valid, praktis, dan efektif dalam meningkatkan pemahaman konsep siswa tunanetra di sekolah inklusi. Media BARUSIDA adalah alat peraga nyata pada topik bangun ruang sisi datar yang didesain dengan memanfaatkan modalitas taktil siswa tunanetra, penulisan huruf Braille, serta dapat dibongkar-pasang seperti puzzle agar mereka dapat mengkonstruksi lebih dari satu jenis model bangun ruang sisi datar secara fleksibel. Metode penelitian yang digunakan adalah penelitian pengembangan model Plomp yang terdiri dari 5 fase, yaitu: (1) investigasi awal; (2) desain; (3) konstruksi; (4) tes, evaluasi, revisi; dan (5) implementasi. Penelitian ini dilakukan di SMP Modern Islamic School (MIS) sebagai salah satu sekolah inklusi yang melayani siswa tunanetra di Surakarta. Penelitian ini dilakukan secara terbatas pada 3 siswa tunanetra sebagai subjek penelitian dikarenakan kondisi pandemi Covid-19. Teknik analisis data untuk uji efektivitas adalah Single Subject Research dengan model Multiple Baseline Design tipe A-B. Hasil yang diperoleh adalah media BARUSIDA yang valid, praktis, dan efektif.  Media BARUSIDA dinyatakan valid berdasarkan hasil validasi ahli. Media BARUSIDA dinyatakan praktis karena diperoleh tingkat keterlaksanaan media dan keinginan penggunaan media berada pada kategori Baik dan Sangat Baik dengan rerata skor angket respon guru sebesar 3,214, rerata skor angket respon dua orang siswa sebesar 3,2, serta rerata skor respon seorang siswa sebesar 3,5. Media BARUSIDA dinyatakan efektif karena terdapat peningkatan skor pemahaman konsep dari baseline ke treatment sebesar 1 sampai 3 poin setelah dilakukan beberapa sesi pertanyaan wawancara berbasis tugas terkait indikator pemahaman konsep.Kata Kunci: Bangun Ruang Sisi Datar, Media Pembelajaran Adaptif, Pemahaman Konsep, Sekolah Inklusi, Siswa Tunanetra. AbstractThis research aims to develop a valid, practical, and effective adaptive polyhedron learning media in geometry. The media is labeled as BARUSIDA. BARUSIDA is a real learning media in the form of concrete manipulatives on polyhedrons in geometry, designed by considering the tactile principles of visually impaired students. BARUSIDA can represent more than one type of geometry shape because it can be assembled flexibly like a puzzle so that visually impaired students can construct some solid geometry shape models. The method used in this research is development research which refers to the Plomp development model. The Plomp development model consists of 5 phases, namely: (1) preliminary investigation, (2) design, (3) construction, (4) test, evaluation, and revision, and (5) implementation. This research was conducted at SMP Modern Islamic School (MIS) as one of the inclusion schools serving visually impaired students in Surakarta. This research was conducted very carefully and was limited to 3 blind students due to the Covid-19 pandemic conditions.   The results obtained in this research is valid, practical, and effective BARUSIDA learning media. BARUSIDA was declared valid after there were no comments or suggestions for improvement from experts after a series of expert validation processes had been carried out. BARUSIDA media is stated to be practical with the mean score of the level of media implementation and the desire to use media from the teacher’s response questionnaire of 3.214, the mean score of the two students’ questionnaire responses is 3.2, and the average response score of a student is 3.5. BARUSIDA media was declared effective with increased concept understanding scores from baseline to treatment, which ranged from 1 to 3 points after several sessions of task-based interview questions related to concept understanding indicators.Keywords: Development Research, Manipulatives, Polyhedron, Concept Understanding, Visually Impaired Students, Inclusive Schools.
MEMBANGUN KEAKTIFAN MAHASISWA PADA PROSES PEMBELAJARAN MATA KULIAH PERENCANAAN DAN PENGEMBANGAN PROGRAM PEMBELAJARAN MATEMATIKA MELALUI PENDEKATAN KONSTRUTIVISME DALAM KEGIATAN LESSON STUDY Farida Nurhasanah
Jurnal Infinity Vol 1, No 1 (2012): Volume 1 Number 1, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (727.964 KB) | DOI: 10.22460/infinity.v1i1.p62-78

Abstract

Subject Planning and Development of Mathematics Teaching Programis one of the compulsory subjects studied by the student teachersmathematics. although students have a pretty good value at this course,it turns out the learning process that lasts until today is still dominated by a teacher centered approach. Students tend to be passive and silent throughout the learning process takes, and lecturers dominated by lecture method. It is an irony, because the current student teachers introduced in a constructivist approach, which is student-centered approach. With this approach the expected knowledge no longer be moved through lectures but built by individuals who learn. One effort peningakatan pembalajaran quality can be carried out through the lesson study. As one of the efforts to improve the quality of the learning process through lesson study activities it is necessary to study how keaktifkan and mastery learning students in the learning process in the course P4M that uses cooperative approach with the background konstrutivisme. In accordance with the object to be examined, this study is a qualitative research, consisting of three cycles with research subjects students take courses Planning and Development of Mathematics Learning Program in the first semester of the 2011/2012 academic year Class A in Mathematics Education Prodi FKIP UNS. Based on the analysis of data that consists of activities (1) reduce the data; (2) present data; (3) make findings and (5) triangulate the conclusion that that the activity of the student in the learning process in the course of Planning and Development Program Teaching Mathematics using constructivist approach and background cooperative looks dominant appeared on the group's activities or more likely awakened by the situation of sociological constructivism , Mastery learning students in the subject of Planning and Development of Teaching Mathematics Program by using a constructivist approach and cooperative background indicated increased with increasing activity of students in the learning process takes place.
ANALISIS KESULITAN DALAM MENYELESAIKAN MASALAH ABSTRAKSI MATEMATIS PADA POKOK BAHASAN FUNGSI Nor Khasanah; Tri Atmojo Kusmayadi; Farida Nurhasanah
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 10, No 1 (2021)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (481.722 KB) | DOI: 10.24127/ajpm.v10i1.3445

Abstract

AbstractThe purpose of this study was to determine the types and factors that cause student difficulties in solving mathematical abstraction problems on the subject of functions. This research used a qualitative descriptive research type, with research subjects totaling 3 students of class VIII MTS Mada Nusantara Jepara in the academic year 2019/2020 who were taken by purposive sampling. The data collection techniques used were tests, interviews, and documentation. Data analysis used includes data reduction, data presentation, and drawing conclusions. The results of the research conclusions obtained are: 1) Types of difficulties in solving mathematical abstraction problems in the subject of functions, namely students having difficulty understanding the concept of functions, students having difficulty applying the right formula, students having difficulty connecting between concepts, and students having difficulty in carrying out operations. 2) Factors that cause students difficulty in solving mathematical abstraction problems on the subject of functions, namely students lack of practice in solving questions, students are confused about applying the right formula, students are less careful and in a hurry in solving questions, and students do not double-check their answers. Keywords: Causative Factor; Mathematical Abstraction; Student’s Difficulties
DESKRIPSI KEMAMPUAN PEMECAHAN MASALAH SISWA SMP DITINJAU DARI DISPOSISI MATEMATIS Ida Yuliani; Tri Atmojo Kusmayadi; Farida Nurhasanah
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 10, No 2 (2021)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (617.073 KB) | DOI: 10.24127/ajpm.v10i2.3685

Abstract

Penelitian ini bertujuan untuk mendeskripsikan kemampuan pemecahan masalah matematis siswa ditinjau dari disposisi matematis. Penelitian dilakukan di kelas VIII B SMP Takhassus Al Qur'an Pekuncen. Subjek penelitian adalah enam siswa yang diambil dari kategori disposisi matematika tinggi, sedang, dan rendah. Data diambil dari hasil angket disposisi matematis, hasil tes dan hasil wawancara kemampuan pemecahan masalah. Hasil dari penelitian ini adalah siswa dengan kemampuan disposisi matematis tinggi memiliki kemampuan yang baik dalam memahami masalah terbukti dari hasil wawancara, menuliskan hal yang diketahui dan ditanyakan dengan bahasanya sendiri tetapi belum menuliskannya secara lengkap. Tepat dalam merencanakan penyelesaian, perhitungan dan pelaksanaan rencana sehingga memperoleh hasil yang benar. Tahap memeriksa kembali tidak dilaksanakan oleh siswa dengan kemampuan disposisi tinggi kecuali merasa ada keganjalan pada solusi yang diperoleh. Siswa dengan kemampuan disposisi matematis rendah sudah berusaha menuliskan data yang diperoleh dalam bahasanya sendiri tetapi membutuhkan stimulus pertanyaan pada saat wawancara, kurang tepat dalam merencanakan solusinya, perhitungan dan memanfaatkan data sehingga menghambat tahap melaksanakan rencana. Siswa dengan kemampuan disposisi matematis rendah memerlukan perhatian khusus dari guru karena masih kesulitan memahami masalah sehingga tidak dapat melewati empat tahapan pemecahan masalah. Siswa dengan kemampuan disposisi matematis sedang dan rendah tidak melaksanakan tahap memeriksa kembali.
Concept of Triangle: Examples of Mathematical Abstraction in Two Different Contexts Farida Nurhasanah; Yaya S. Kusumah; Jozua Sabandar
International Journal on Emerging Mathematics Education IJEME, Vol. 1 No. 1, March 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (841.424 KB) | DOI: 10.12928/ijeme.v1i1.5782

Abstract

Geometry has abstract notions to be learnt so that all those notions cannot be just transferred into students' mind like a bunch of information that should be memorized. Students need to construct those concepts during their learning process. This process of knowledge construction can be considered as an abstraction process. This study aimed to qualitatively compare abstraction process of students who learned the topic of triangle in conventional method and in van Hiele model of teaching aided by Geometers' sketchpad. Subjects of this study were junior high school students in grade 7. This is a qualitative study with grounded theory design. Data were collected through classroom observation, test, and task-based interview. Results of the study show that theoretical abstraction processes tend to dominate classrom with conventional method of teaching while classroom with van Hiele model of teaching aided by Geometers' sketchpad accommodated empirical abstraction process of the students.
Kampanye Public Relations tentang Sosialisasi Program Bayar Iuran Tepat Waktu (Studi Deskriptif Kualitatif pada Kampanye Public Relations di Kantor BPJS Kesehatan Cabang Soreang) Farida Nurhasanah
Reputation: Jurnal Hubungan Masyarakat Vol 3 No 3 (2020): Reputation: Jurnal Ilmu Hubungan Masyarakat
Publisher : Jurusan Ilmu Komunikasi, Fakultas Dakwah dan Komunikasi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/reputation.v3i3.2193

Abstract

ABSTRAK Kampanye public relations merupakan tindakan komunikasi yang mempengaruhi untuk mengubah sikap masyarakat. BPJS Kesehatan menggunakan kampanye public relations melalui sosialisasi program. Penelitian ini menggunakan konsep Model Kampanye Leon Ostegaard dengan menggunakan metode studi deskriptif kualitatif, pendekatan interpretif dan paradigma kontruktivistik. Hasil penelitian menunjukan: (1) Ada faktor ketidak tahuan masyarakat. (2) Perencanaan menentukan segmentasi sasaran, komunikator, media dan pembentukan jadwal dan pelaksanaan sosialisasi langsung dan tidak langsung. (3) Mengamati perubahan sikap , kepatuhan dan kegiatan kampanye yang dilaksanakan oleh BPJS Kesehatan tidak efektif karena dilihat dari kolektibilitas data masih di 55% - 59%. Kata Kunci : Kampanye Public Relations, Sosialisasi, Program, Interaksi Sosial, BPJS Kesehatan. ABSTRACTPublic relations campaign is an act of communication that influence to change people's attitudes. BPJS Kesehatan to use of public relations campaign activities through program socialization. This study uses the concept of Leon Ostegaard's Campaign Modegl by using a qualitative descriptive study method, an interpretive approach and a constructivist paradigm. The results showed: (1) The public did not. (2) Planning determining target segmentation, communicators, media and scheduling implementing direct and indirect. (3) Observing changes in attitudes, compliance and campaign activities carried out by BPJS Kesehatan are not effective because seen from the collectibility of the data it is still at 55% - 59%. Keywords : Public Relations Campaign, Socialization, Programs, Social Interaction, BPJS Kesehatan.
Advanced Mathematic Thinking Ability Based on The Level of Student's Self-Trust in Learning Mathematic Discrete Yemi Kuswardi; Budi Usodo; Sutopo Sutopo; Henny Ekana Chrisnawati; Farida Nurhasanah
Journal of Mathematics and Mathematics Education Vol 10, No 2 (2020): Journal of Mathematics and Mathematics Education (JMME)
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/jmme.v10i2.47080

Abstract

Mathematical thinking and self-confidence are indispensable aspects of learning mathematics and are influential in solving mathematical problems. In higher education mathematics learning, advanced mathematical thinking skills are required (Advance Mathematical Thinking. Advanced mathematical thinking processes include: 1) mathematical representation, 2) mathematical abstraction, 3) connecting mathematical representation and abstraction, 4) creative thinking, and 5) mathematical proof. Discrete mathematics is one of the courses in mathematics education FKIP UNS. The problems in Discrete Mathematics courses are usually presented in the form of contextual problems. Students often experience difficulties in making mathematical expressions and mathematical abstractions from these contextual problems. In addition, students also experience difficulties in bookkeeping. Most students often prove by using examples of some real problems. Even though proof in mathematics can be obtained by deductive thinking processes or inductive thinking processes, the truth is that mathematics cannot only come from the general assumption of inductive thinking. Based on this, a qualitative descriptive study was carried out which aims to determine the advanced mathematical thinking skills based on the level of student self-confidence. Research with the research subjects of FKIP UNS Mathematics Education Students in Discrete Mathematics learning for the 2019/2020 school year gave general results that the student's ability in advanced mathematical thinking was strongly influenced by the level of student confidence in learning. The higher the student's self-confidence level, the better the student's advanced mathematical thinking ability, so that high self-confidence has a great chance of being successful in solving math problems.
Co-Authors Adnan, Mazlini Ai Len Gan Alias, Nurul Hafizah Andriani, Siti Puri Anggoro Canggih Pinilih Anissa Taouil Hassaouna Arum Nur Wulandari Azkiya Salsabila Benedictus Sudiyana Budi Usodo Budi Usodo Budi Usodo Budi Usodo Budi Usodo Chrisnawati, Henny Ekana Damastuti, Ayun Siwi Damayanti, Alfiyana Daniel Asamoah Desi Puji Astuti Dewi Kusumaningsih Eko Dody Setiawan Eni Puji Rahayu Fitriana, Laila Hardani - - Harjati, Juliana Kristin Haryani Mohammad Hendriyanto, Agus Henny Ekana Chrisnawati I Made Ratih Rosanawati I Made Ratih Rosanawati Ida Yuliani Iffah, Rona Dhiya Layli Ikrar Pramudya Imam Sujadi Indriati , Diari Jozua Sabandar Jozua Sabandar Juniati Juniati Kartikaningtyas, Nafiqoh Elsa Kartikasari, Maharani Kristanto, Matias Vico Anggoro Kuswardi, Yemi Leo Setiawan Maarten Dolk, Maarten Mardiyana Mardiyana Masitah Shahrill Masitah Shahrill Masitah Shahrill, Masitah Maullina, Eka Siti Muhammad Nashiruddin, Muhammad Muhlis Fajar Wicaksana Munzayanah, Nurul Nor Khasanah Nordiana Zakir Nursanti, Yuli Bangun Nursatin, Yuli Bangun Nuur’ainii, Zahra Lintang Pinilih, Anggoro Canggih Prabandari, Radha Sita Pramesti, Getut Puspitaningtyas, Apriliana Retno Rahmadi, Imam Fitri Ratih Wijayava Roslinawati Roslan Rosni Othman Rubono Setiawan Rully Charitas Indra Prahmana Russasmita Sri Padmi S Siswanto Sabandar, Jozua Sahar Abbas Ibrahim Sari, Nurratri Kurnia Sawitri Sawitri Septiari, Wahyu Dini Sihindun Arumi Sri Marmoah Sri Subanti Susanti, Vica Amalia Sutopo Sutopo Sutopo Sutopo Sutopo Sutopo Sutopo Sutopo Sutopo Sutopo Sutopo Sutopo Titik Subarni Tri Atmojo Kusmayadi Tri Atmojo Kusmayadi Tri Atmojo Kusmayadi Triyanto Triyanto Triyanto Tuti, Dewi Setyas Utami, Aprilia Nur Wahyuni, Ika Muji Warifdah, Yumna Widi Lestari Wirani Sumekar Yaya S. Kusumah Yemi Kuswardi, Yemi Yuli Bangun Nursanti