Articles
Classification of Melinjo Fruit Levels Using Skin Color Detection With RGB and HSV
Dadang Iskandar;
Marjuki Marjuki
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 1 (2022): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (477.566 KB)
|
DOI: 10.37385/jaets.v4i1.958
This study aims to detect the ripeness of melinjo fruit using digital image method. Structured identification or division using image processing and computer vision requires the socialization of patterns based on training datasets. Melinjo (Gnetum gnemon L.) is a plant that can grow anywhere, such as yards, gardens, or on the sidelines of residential areas, as a result, produces melinjo into a plant that has relatively large potential to be developed. The process of image processing and pattern socialization is a highly developed research study. Starting based on the process of socializing an object, or a structured division of the object and about detecting the level of fruit maturity. The structured division process regarding ripeness into 3 classes, namely: raw, half-cooked and ripe where the process is carried out using Google Collaboratory which processes the RGB color space to HSV. In this study, the testing method for the system that will be used is a functional test where the test is carried out only by observing the execution results through test data and checking the functionality of the system being developed. The level of accuracy obtained from this study is 98.0% correct.
Classification of Edelweiss Flowers Using Data Augmentation and Linear Discriminant Analysis Methods
Fransiscus Rolanda Malau;
Dadang Iskandar Mulyana
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 1 (2022): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (421.157 KB)
|
DOI: 10.37385/jaets.v4i1.960
Edelweiss is a plant that grows at a height, and is known as a perennial flower because it has beautiful petals and does not wilt easily. Although edelweiss in Indonesia is still in the same family as Leontopodium Alpinum, it turns out that the type of edelweiss found in the mountains of Indonesia is different from edelweiss found abroad. Therefore, in this study, an image processing system was developed that can classify the types of edelweiss flowers based on their image using Linear Discriminant Analysis to classify data into several classes based on the boundary line (straight line) obtained from linear equations. In this study, the types of edelweiss flowers used in this study were Anaphalis Javanica and Leontopodium Alpinum, the two types of edelweiss flowers were distinguished based on their color characteristics using hue and saturation values. The images used are 1500 images for training data and 450 test data images with a training and test data ratio of 70:30, so that the accuracy produced in the testing process is 99.77% in the Linear Discriminant Analysis method.
Detection of The Deaf Signal Language Using The Single Shot Detection (SSD) Method
Dadang Mulyana Iskandar;
Mesra Betty Yel;
Aldi Sitohang
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 1 (2022): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (601.192 KB)
|
DOI: 10.37385/jaets.v4i1.966
Sign Language is a language that prioritizes manual communication, body language, and lip movements, instead of sound, to communicate. Deaf people are the main group who use this language, usually by combining hand shape, orientation and movement of the hands, arms, and body, and facial expressions to express their thoughts. Therefore, the researcher created an image recognition program in sign language using the Single Shot Detection (SSD) method, which is a convolution activity by combining several layers of preparation, by utilizing several components that move together and are motivated by a biological sensory system. The letters used in making sign language programs use the letters of the alphabet (az). This sign language detection programming that runs on the Google Collaboratory application
Sign Language Detection System Using Adaptive Neuro Fuzzy Inference System (ANFIS) Method
Dadang Mulyana Iskandar;
Mesra Betty Yel;
Eka Maheswara
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 1 (2022): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (601.221 KB)
|
DOI: 10.37385/jaets.v4i1.967
Sign language is a language that prioritizes communication with hands, body language, and lip movements to communicate. The deaf are the main group who use this language, often combining hand shape, hand, arm and body orientation and movement, and facial expressions to express their thoughts. The sign language detection system is designed using the Adaptive Neuro Fuzzy Inference System (ANFIS). This study uses data from the kaggle.com dataset, which is a site that provides research data on artificial intelligence. This study was conducted to recognize empty hand signals. Where it will help users naturally without any additional help. The test is carried out using a data set as evidenced by 1 display. In this process, The characteristics of the hand were carried out using the Histogram Oriented Gradient (HOG) method. Meanwhile, to separate it from the background image, it is used with color segmentation. The results of the process are then taken for classification. The classification process uses the Adaptive Neuro Fuzzy Inference System method. The results of the tests carried out for accuracy are as much as
Optimasi Klasifikasi Batik Betawi Menggunakan Data Augmentasi Dengan Metode KNN Dan GLCM
Ali Akbar;
Dadang Iskandar Mulyana
Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Vol 3 No 2 (2022): Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Oktober 2022
Publisher : Universitas Islam Madura
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31102/jatim.v3i2.1577
Batik telah menjadi salah satu warisan budaya leluhur negara Indonesia yang terus dikembangkan, dilestarikan dan dijadikan identitas budaya bangsa Indonesia. Salah satu batik yang belum terangkat ke permukaan adalah batik Betawi. Penelitian ini dilakukan untuk mengklasifikasikan batik betawi ke dalam beberapa kelas berdasarkan motif nya sehingga mempermudah dalam pengenalan batik betawi secara citra digital. Metode yang digunakan adalah K-Nearest Neighbor untuk menentukan kedekatan antara citra uji dengan citra latih sedangkan Gray-Level Co-occurrence Matrix untuk ekstraksi ciri teksturnya. Untuk dataset penulis menggunakan dataset publik dari website Kaggle yang berjudul “Indonesian Batik Motifs” dan beberapa sumber dari Google. Karena kekurangan banyak dataset, maka penulis mengaugmentasi dataset yang sudah di dapatkan hingga berjumlah 1.020 citra. Dan hasilnya persentase nilai akurasi tertinggi terdapat pada motif Burung Hong, Monas, Nusa Kelapa, Pengantin Betawi, Ondel-Ondel, Rasamala dan Salakanagara sebanyak 97%. Untuk nilai akurasi terendah terdapat pada motif Kali Ciliwung dan Topeng Betawi sebanyak 93%. Selebihnya yaitu motif Golok, Penari Ngarojeng dan Pucuk Rebung mendapatkan nilai akurasi sebanyak 95%. Dan nilai rata-rata akurasi dari semua motif batik Betawi ini mendapatkan nilai 96%. Hasil ini menunjukan bahwa penelitian ini sangat baik. Kata kunci : Klasifikasi, Batik Betawi, K-Nearest Neighbor, Gray-Level Co-occurrence Matrix.
OPTIMASI IMAGE CLASSIFICATION PADA JENIS SAMPAH DENGAN DATA AUGMENTATION DAN CONVOLUTIONAL NEURAL NETWORK
Raga Permana;
Handrianus Saldu;
Dadang Iskandar Maulana
Jurnal Sistem Informasi dan Informatika (Simika) Vol 5 No 2 (2022): Jurnal Sistem Informasi dan Informatika (Simika)
Publisher : Program Studi Sistem Informasi, Universitas Banten Jaya
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.47080/simika.v5i2.1913
Garbage is useless goods/materials used normally or specifically in production, goods damaged during production or useless materials which mainly come from households. Moreover, inorganic waste is very difficult and takes a longer time to be decomposed by the soil. The lack of public knowledge about the classification of types of waste and how to process it causes a very serious problem in Indonesia. Therefore, this research creates a waste type recognition program using the Convolutional Neural Network (CNN) algorithm, which can be used to detect and recognize objects in an image. CNN is a technique inspired by the way mammals, humans, produce visual perception. CNN is included in the type of deep neural network because of its high network depth and widely applied to imagery. 2 Types of waste classification, namely inorganic waste and organic waste. The implementation of garbage image recognition uses 2 test models, Sequential and on top VGG16 which runs on the Google Collaboratory application, and Keras. After carrying out the Augmentation process, the number of test data in this study was 1489 images on the training data and 182 on the testing data resulting in an evaluation value with an accuracy of 90.97% and a loss value of 0.307 on the Sequential model, and an accuracy value of 97.99% with a loss value of 0.069 on the on top model. VGG16.
Deteksi Bahasa Isyarat Dalam Pengenalan Huruf Hijaiyah Dengan Metode YOLOV5
Dadang Iskandar Mulyana;
Muhammad Faizal Lazuardi;
Mesra Betty Yel
Jurnal Teknik Elektro dan Komputasi (ELKOM) Vol 4, No 2 (2022): ELKOM
Publisher : Universitas Muhammadiyah Jember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.32528/elkom.v4i2.8145
Bahasa isyarat adalah Bahasa yang menggunakan gerakan tangan dan tubuh, serta ekspresi dalam menyampaikan kata dan kalimat. Belajar huruf Hijaiyah adalah langkah awal untuk bisa membaca Al-Qur'an. Anak penyandang tunarungu dan tunawicara memiliki IQ di bawah rata-rata anak normal, yang menyebabkan proses belajar mereka lebih lambat dan memerlukan metode khusus. Ada sekelompok besar tunarungu-bisu di seluruh dunia, dan bahasa isyarat adalah alat komunikasi utama dalam komunitas ini. Penyandang tunarungu dan tunanetra perlu untuk dapat berkomunikasi dengan orang lain yang mampu mendengar, dan orang yang mendengar juga perlu memahami bahasa isyarat, yang menghasilkan permintaan yang besar untuk pelajaran bahasa isyarat. Sudah banyak penelitian yang membahas tentang pendeteksian sebuah objek menggunakan citra digital untuk mengenali macam-macam bahasa isyarat. Penelitian kali ini penulis menerapkan metode YOLOV5 untuk mendeteksi Bahasa isyarat khususnya huruf hijaiyah. Pada penelitian ini penulis menggunakan dataset sebesar 1014 gambar dengan kelas huruf hijiyah dari alif sampai ya. Hasil penelitian yang di peroleh menggunakan metode YOLOV5 terbukti dapat mengenali objek secara konsisten dengan nilai tingkat akurasi yang cukup tinggi yaitu 95%
Pembuatan Aplikasi Tajwid Berbasis Web MTs HAUDHIYAH AL-WATHONIYAH 43 Kelurahan Jatinegara
Yuma Akbar;
Dadang Iskandar Mulyana;
Sri Lestari;
Agung Pratama;
Aldi Sitohang;
Eka Satria Maheswara;
Muhammad Faizal Lazuardi
Jurnal Teknik Elektro dan Komputasi (ELKOM) Vol 4, No 2 (2022): ELKOM
Publisher : Universitas Muhammadiyah Jember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.32528/elkom.v4i2.7412
MTs HAUDHIYAH AL-WATHONIYAH 43 adalah salah satu sekolah yang bernaung dibawah Lembaga madrasah. Di sekolah tersebut belum memiliki website khusus sekolah, serta pembelajaran yang belum menggunakan teknologi digital. Maka dibutuhkan suatu sistem yang lebih baik dengan penerapan teknologi informasi, yang dapat membantu dalam pencatatan data guru, serta murid di sekolah ini. Pembuatan website dan aplikasi ini bertujuan untuk memudahkan pencatatan data serta pembelajaran yang sudah memanfaatkan kemajuan teknologi. Website sekolah ini didalamnya terdapat aplikasi mengaji yang dikhususkan untuk seluruh siswa-siswi dan guru madrasah yang telah didaftarkan oleh admin. Sumber data yang digunakan website ini didapat dari pihak sekolah melalui tata usaha. Metode yang dilakukan untuk membuat website ini adalah dengan cara menganalisis kebutuhan fitur yang dibutuhkan oleh sekolah dan menganalisa cara belajar siswa-siswi disekolah, serta pengujian terhadap webiste itu sendiri. Website dan aplikasi yang dibuat sudah memenuhi kebutuhan fitur yang dibutuhkan oleh sekolah, serta tampilan yang cukup sederhana ternyata dapat memudahkan pengurus sekolah dalam mengelola data dan mendapatkan informasi karena system informasi ini menyediakan fitur yang lengkap dan mudah dimengerti. Cara atau metode tradisional atau secara langsung merupakan hal yang biasa dilakukan oleh para guru mengaji dalam belajar.Pentingannya belajar ilmu tajwid adalah supaya kitab isa memahami bagaimana hukum-hukum membaca Al-Quran yang baik dan benar.
Implementation of Dijkstra's Algorithm in Open Shortest Path First (OSPF) Routing Protocol Using Juniper
Fadhil Khanifan Achmad;
Dadang Iskandar Mulyana;
Yuma Akbar
INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics Vol 7 No 1 (2022): INFORMATICS FOR EDUCATORS AND PROFESSIONAL : JOURNAL OF INFORMATICS (Desember 202
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat Universitas Bina Insani
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.51211/itbi.v7i1.1984
In the modern era with the growth of human resources and the acceleration of the need for rapid communication, of course it must be accompanied by the development of network technology to support these needs, in this case network technology plays a very important role as a bridge to connect between nodes or individuals. but in practice it is often encountered in large-scale computer networks facing problems in data communication lines. the transmission process to distribute data takes a long time because of the wrong route selection. And in this case the OSPF (Open Shortesh Path First) routing protocol is here to be able to answer this problem, OSPF is a routing protocol that is often used in medium and large scale networks. OSPF distributes routing information between autonomous system (AS) routers. OSPF is a routing protocol that uses a linkstate algorithm to construct and calculate the best path to all known destinations. The link-state algorithm is also known as the dijkstra algorithm or the shortest path first (SPF) algorithm. The dijkstra algorithm is applied in the OSPF protocol to choose the best route that must be taken by a data packet from an origin address in order to arrive at the destination address with the smallest unit load value (cost/metric). Abstrak Bahasa Inggris maksimum 250 kata dalam satu alinea menggunakan huruf Arial 10, spasi 1. Abstrak berisi pendahuluan singkat, tujuan, metode dan hasil secara ringkas dan jelas. Penulisan singkatan yang tidak umum tidak diperkenankan kecuali didefinisikan sebelumnya.
Implementasi Pembatasan Akses Sosial Media Menggunakan Layer 7 Protocol Pada Perangkat Mikrotik DI SMK IDN
Abdul Shomad;
Yuma Akbar;
Dadang Iskandar Mulyana
INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics Vol 7 No 1 (2022): INFORMATICS FOR EDUCATORS AND PROFESSIONAL : JOURNAL OF INFORMATICS (Desember 202
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat Universitas Bina Insani
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.51211/itbi.v7i1.1998
: SMK IDN Borading School is one of the schools in Bogor Regency that has national standards. This school has a very broad environment. In addition, this school also has a fairly good internet network. This can be seen by the breadth of the internet network that almost covers the entire school environment. At SMK IDN, the main problem is the use of internet network data by students to play games and social media during study hours, so it takes a system that is capable of being a protection so that users cannot use the internet to play games and social media during study hours. . Based on this, this study aims to test the implementation of social media access restrictions using the layer 7 protocol feature on a network with Mikrotik devices at SMK IDN. In general, this study shows the success of blocking several social media applications such as youtube, instagram and tiktok. So when social media like the one above can be blocked learning in class will be very conducive where students will always pay attention to the teacher who is delivering material and students will not be able to steal opportunity to access social media in class.