Articles
Sistem Pakar Metode Backward Chaining untuk Optimalisasi Pelayanan Pemberian Informasi Obat
Surya Dwi Putra;
Dhena Marichy Putri;
Sarjon Defit;
Sumijan Sumijan
JITCE (Journal of Information Technology and Computer Engineering) Vol 7 No 01 (2023): Journal of Information Technology and Computer Engineering
Publisher : Universitas Andalas
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jitce.7.01.1-7.2023
Drug information service is an assistance service to handle the needs of pharmacists related to medicines consumed by patients at the Lasi Health Center, Agam Regency. Nowadays, most of drug information services always require pharmacists to carry out their services, although there is limited number of pharmacists for providing drug information services at the Lasi Health Center, Agam Regency. This study aims to optimize drug information services so that the services can be carried out without the direct presence of a pharmacist. The data used in this study were drug prescription data available at the Pharmacy of Lasi Health Center Agam for the last 12 months and drug information services provided by pharmacists at the Lasi Health Center Agam Regency. This study used the backward chaining method to identify the drugs prescribed to the patients. The result achieved by this study were 356 Rules that could be applied directly to drug information services, with an accuracy rate of 100%. The rules generated using the backward chaining method can be used to optimize drug information services at the Lasi Health Center in Agam Regency without having to be served directly by pharmacists.
Metode k-means clustering untuk mengukur tingkat kedisiplinan pegawai (studi kasus di pemerintah kabupaten padang pariaman)
Rezki -;
Sarjon Defit;
Sumijan
Computer Science and Information Technology Vol 4 No 1 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37859/coscitech.v4i1.4728
Knowledge Discovery In Database (KDD) is a process of converting raw data into useful data in the form of information. Data mining is a technique of digging up hidden or hidden valuable information in a very large data collection (database) so that an interesting pattern is found that was previously unknown. Clustering is a method in data mining in which data objects that have similarities or the same characteristics are grouped into one group and those that are different are grouped into another group. One aspect of discipline that can be used to evaluate employee performance is attendance. The k-means method is used to classify employee discipline levels and then describes the values that have been obtained to generate new knowledge regarding data patterns on employee discipline levels. The attendance data is clustered into 3, namely to measure low, medium, and high levels of discipline. After carrying out the calculation process, the 41 employee samples produced 3 iterations, and the final result was 3 clustering, namely cluster 1 of 10 employees with low discipline, cluster 2 of 7 employees with moderate discipline, and cluster 3 of 24 employees with high discipline. This is intended so that leaders can find out which employees have high, medium and low levels of discipline so that they can provide appreciation or rewards and sanctions in order to maintain and improve their discipline so that service to the community can be optimal and the vision and mission of the local government can be achieved. Keywords: KDD, Data Mining, K-Means Clustering Method, Discipline
Sistem Pendukung Keputusan Menggunakan Metode Multi Attribute Utility Theory Untuk Pemilihan Layanan Digital
Ira Nia Sanita;
Sarjon Defit;
Gunadi Widi Nurcahyo
Computer Science and Information Technology Vol 4 No 1 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37859/coscitech.v4i1.4742
Dinas Komunikasi, Informatika dan Statistik (Kominfotik) Provinsi Sumatera Barat merupakan Dinas yang diberi kewenangan untuk membangun dan mengembangkan layanan digital untuk semua Perangkat Daerah di Pemerintah Provinsi Sumatera Barat. Seluruh Perangkat Daerah dapat mengajukan permintaan pembangunan layanan digital ke Dinas Kominfotik. Akan tetapi, tidak semua layanan digital yang diminta akan difasilitasi dan diakomodir oleh Dinas Kominfotik. Ada beberapa kriteria pemilihan dalam pembangunan Layanan Digital yaitu Layanan Digital yang sesuai dengan Arsitektur Sistem Pemerintahan Berbasis Elektronik (SPBE) Nasional, mendukung Program Unggulan Pemerintahan Provinsi Sumbar, Quick Win Layanan sesuai Peta Rencana SPBE, tujuan pembuatan layanan digital, serta Bahasa Pemograman yang digunakan dalam pembangunan Aplikasi. Penelitian ini menggunakan metoda Multi Attribute Utility Theory (MAUT). Metode MAUT digunakan untuk menentukan pemilihan layanan digital yang akan dibangun berdasarkan bobot dan kriteria yang sudah ditentukan. Kemudian dilakukan proses perankingan yang akan menentukan pilihan yang menjadi prioritas. Dan dari hasil pengujiannya didapatkan penerapan metode MAUT pada Sistem Pendukung Keputusan pemilihan layanan digital menghasilkan alternatif yang menjadi prioritas (rangking 1) adalah Layanan Penerimaan Peserta Didik Baru (PPDB) dengan nilai 0,933. Kata Kunci : Sistem Pendukung Keputusan, Layanan Digital, Multi Attribute Utility Theory (MAUT)
Sistem Pendukung Keputusan dengan Metode AHP dalam Penentuan Pemilihan Minat Siswa
Wenni Afrodita;
Sarjon Defit;
Yuhandri Yuhandri
JUKI : Jurnal Komputer dan Informatika Vol. 5 No. 1 (2023): JUKI : Jurnal Komputer dan Informatika, Edisi Mei 2023
Publisher : Yayasan Kita Menulis
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Senior High School is a level of formal education in selecting student interests selection of specialization is a grouping of learning interests that makes it easier for students to pursue knowledge in further education, especially in tertiary institutions. Specialization is designed to guide students so they can follow certain subjects at the next school level. Decision Support System has many methods that can be used. One of the methods used in this research is the Analytical Hierarchy Process (AHP) method. This decision support model will break down complex multi-factor or multi-criteria problems into a hierarchy, so that the decisions taken can be more objective. Because the concept of the AHP method is to change qualitative values into quantitative values. The Decision Support System uses the Analytical Hierarchy Process method to determine student interest choices in selecting interest in major subjects. This is a decision support system created to determine interest selection for class X students at SMAN 1 Kinali. The specialization that will be selected is taken from various criteria such as the average value of report cards, understanding of the material and students' interests. Test results on the AHP method obtained an accuracy of 90% from 10 test data. With this application, students are expected to get specialization according to their respective interests and abilities.)
Implementasi Augmented Reality Berbasis Android sebagai Media Pembelajaran Matematika Dimensi Tiga
Zurni Mardian;
Sarjon Defit;
Sumijan Sumijan
Jambura Journal of Informatics VOL 5, NO 1: APRIL 2023
Publisher : Universitas Negeri Gorontalo
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37905/jji.v5i1.19361
Technology has an important role in education, namely, facilitating teacher-student interaction in teaching and learning activities. This is realized by applying technology to learning media. The limitation of space building props in learning high school mathematics on the topic of the Third Dimension requires teacher innovation to develop interactive learning media that can be used at any time. The use of Augmented Reality (AR)-based interactive media with Marker-based Tracking techniques is designed to help students visualize 3D objects well. 3D objects were created using the 3Ds Max software. This research produced a product in the form of an AR Distance in Space application that runs on Android. An AR camera is used to detect markers and display cubes, pyramids, and beam objects. The black-box test results show that the application is as planned and can run normally. This means that the AR Distance in Space applications is categorized as Very Good or receives a positive response from users. This application can be used as an interactive learning media that can facilitate students’ understanding of the topic of the Third Dimension and increase student motivation in learning mathematics. Teknologi memiliki peranan penting dalam pendidikan, yaitu memfasilitasi interaksi guru dan murid dalam kegiatan belajar mengajar. Ini diwujudkan dengan menerapkan teknologi dalam media pembelajaran. Keterbatasan alat peraga bangun ruang dalam pembelajaran Matematika SMA topik Dimensi Tiga memerlukan inovasi guru untuk mengembangkan sebuah media pembelajaran interaktif yang dapat digunakan di setiap waktu. Penggunaan media interaktif berbasis Augmented Reality (AR) dengan teknik Marker-based Tracking dirancang untuk membantu siswa memvisualisasikan objek 3D dengan baik. Objek 3D dibuat dengan software 3Ds Max. Pembuatan marker menggunakan Vuforia SDK dan pada Unity dilakukan pengaturan antarmuka dari aplikasi untuk diterapkan pada Android. Penelitian ini menghasilkan produk berupa aplikasi AR Jarak dalam Ruang yang berjalan pada Android. Penggunaan kamera AR digunakan untuk mendeteksi marker dan menampilkan objek kubus, limas, dan balok. Hasil pengujian Black-box menunjukkan bahwa aplikasi telah sesuai yang direncanakan dan dapat berjalan normal. Ini berarti aplikasi AR Jarak dalam Ruang terkategori Sangat Baik atau mendapat respon positif dari pengguna. Aplikasi ini dapat digunakan sebagai media pembelajaran interaktif yang dapat memudahkan siswa dalam memahami topik Dimensi Tiga dan untuk meningkatkan motivasi siswa dalam pembelajaran Matematika.
Classification of Multiple Emotions in Indonesian Text Using The K-Nearest Neighbor Method
Ahmad Zamsuri;
Sarjon Defit;
Gunadi Widi Nurcahyo
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 2 (2023): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37385/jaets.v4i2.1964
Emotions are expressions manifested by individuals in response to what they see or experience. In this study, emotions were examined through individuals' tweets regarding the election issues in Indonesia in 2024. The collected tweets were then labeled based on emotions using the emotion wheel, which consisted of six categories: joy, love, surprise, anger, fear, and sadness. After the labeling process, the next step involved weighting using TF-IDF (Term Frequency-Inverse Document Frequency) and Bag-of-Words (BoW) techniques. Subsequently, the model was evaluated using the K-Nearest Neighbor (KNN) algorithm with three different data splitting ratios: 80:20, 70:30, and 60:40. From the six labels used in the modeling process, the accuracy was then calculated, and the labels were subsequently merged into positive and negative categories. Then the modeling was conducted using the same process with the six labels. The results of this study revealed that the utilization of TF-IDF outperformed BoW. The highest accuracy was achieved with the 80:20 data splitting ratio, attaining 58% accuracy for the six-label classification and 79% accuracy for the two-label classification
Algoritma K-Means Clustering Penggunaan Bandwidth Internet (Studi Kasus di Pemerintah Daerah Kabupaten Padang Pariaman)
Rizki Mubarak;
Sarjon Defit;
Gunadi Widi Nurcahyo
Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Vol 14, No 1 (2023): Juni
Publisher : Universitas Bandar Lampung (UBL)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.36448/jsit.v14i1.3037
Untuk menunjang kegiatan di Pemerintahan dibutuhkan koneksi jaringan yang yang cepat dan tepat. Sehingga memerlukan jaringan bandwith yang lebar. Manajemen Bandwidth perlu dilakukan agar kecepatan jaringan tetap stabil. Penelitian ini bertujuan untuk melihat pola penggunaan bandwidth di Pemerintah Daerah Kabupaten Padang Pariaman menggunakan K-Means Clustering. Data diambil dari aplikasi Cacti sebuah software open-source, pemantauan jaringan berbasis web. Total datasets hasil ekstraksi yang digunakan adalah sebanyak 32 data OPD (Organisasi Perangkat Daerah) yang ada di Pemerintah Daerah Kabupaten Padang Pariaman tahun 2022.. Data-data yang tersedia selanjutnya diolah untuk mendapatkan target cluster dengan memanfaatkan konsep data mining menggunakan metode K-Mean Clustering. Pengelompokan data pengunaan bandwidth di Kabupaten Padang Pariaman menggunakan metode Clustering dengan algoritma K-Means dengan atribut Nama OPD, Inbound Average, Inbound Maksimum, Outbound Average, Outbound Maximum yang digunakan dalam proses perhitungan dan pembagian data ke dalam 3 cluster dengan kategori penggunaan bandwidth tinggi, rendah, dan sedang. Perhitungan dilakukan secara manual dan kemudian dilakukan pengujian dengan software RapidMiner. Hasil dari perhitungan manual diperoleh jumlah anggota cluster yang sama dengan perhitungan dengan software RapidMiner.
Analisa Dini Gangguan Disleksia Anak Sekolah dengan Metode Backpropagation
Novi Yanti;
Adil Setiawan;
Sarjon Defit
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 9, No 2 (2023): Volume 9 No 2
Publisher : Program Studi Informatika
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.26418/jp.v9i2.64588
Disleksia sering disalah artikan sebagai kebodohan atau kemalasan pada anak. Gejala disleksia dikenal dengan gangguan belajar yang meliputi mengenal huruf, mengeja, membaca, dan menulis. Meskipun gejala disleksia tidak terlihat dengan jelas, kondisi ini dapat berdampak pada perkembangan pola belajar anak. Tujuan penelitian adalah untuk mengidentifikasi gejala disleksia sedini mungkin agar tidak mengganggu perkembangan belajar pada anak. Selain itu, penelitian juga bertujuan untuk mengevaluasi keakuratan teknik yang digunakan. Analisa menggunakan metode jaringan syaraf tiruan dengan teknik backpropagation dengan memberikan nilai bobot, sehingga dapat memberikan nilai input dengan benar. Penelitian menggunakan 150 dataset, 40 variabel input dan 40 lapisan tersembunyi. Keluaran yang diharapkan mencakup disleksia atau non-disleksia. Hasil implementasi dan pengujian untuk data latih dan data uji terbaik adalah 90:10. Dengan nilai epoch maksimum 5000 dan nilai error target 0,001. Metode backpropagation dapat memberikan hasil akurasi terbaik 100% pada learning rate 0,5. Sehingga metode backpropagation dapat dengan baik mendeteksi gangguan disleksia pada anak sejak dini.
Standardscaler's Potential in Enhancing Breast Cancer Accuracy Using Machine Learning
Febri Aldi;
Febri Hadi;
Nadya Alinda Rahmi;
Sarjon Defit
Journal of Applied Engineering and Technological Science (JAETS) Vol. 5 No. 1 (2023): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37385/jaets.v5i1.3080
The major consequence of breast cancer is death. It has been proven in many studies that machine learning techniques are more efficient in diagnosing breast cancer. These algorithms have also been used to estimate a person's likelihood of surviving breast cancer. In this study, we employed machine learning algorithms to predict breast cancer. A total of 569 breast cancer datasets were obtained from kaggle sites. Some of the machine learning algorithms that we use are K-Nearest Neighbor (KNN), besides Random Forest (RF), there is also Gradient Boosting (GB), then Gaussian Naive Bayes (GNB), Vector Support Machine (SVM), and then Logistic Regression (LR). Before algorithms were used to train and test breast cancer datasets, StandardScaler was leveraged to transform training datasets and test datasets for improved algorithm performance. As a result of this utilization, the performance measurement carried out succeeded in producing high accuracy. The highest results were obtained from the Logistic Regression algorithm with an accuracy value of 99%. The value of precison is 99% benign, and 100% malignant. The recall results are 100% benign, and 98% malignant. The F1-Score results show 99% benign, and 99% malignant. It is hoped that this research can help the medical party to determine the next step in dealing with breast cancer.
Enhancing the Decision Tree Algorithm to Improve Performance Across Various Datasets
Putra, Pandu Pratama;
Anam, M Khairul;
Defit, Sarjon;
Yunianta, Arda
INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Vol 8 No 2 (2024): August 2024
Publisher : Universitas Nusantara PGRI Kediri
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.29407/intensif.v8i2.22280
Background: The Village Fund is an initiative by the central government to promote equitable regional development. However, it has also led to corruption. Many Indonesians share their opinions on the Village Fund on social media platforms like X, and news coverage is extensive on portals like detik.com. Objective: This study aims to classify data from social media and news coverage to enhance understanding. Methods: The research improves the decision tree algorithm by integrating other algorithms and techniques such as XGBoost and SMOTE. Ensuring high accuracy is vital for the credibility of machine learning classifications among the public. The study uses two different datasets, necessitating varied testing approaches. For the news portal dataset, a single test with seven labels is conducted, followed by enhancement with XGBoost. The X dataset undergoes two tests with datasets of 1200 and 3078 entries, using three labels. Conclusion: The evaluation results indicate that the highest accuracy achieved with the news portal data was 82%, thanks to a combination of decision tree algorithms with various parameters and the balancing effect of SMOTE. For the Twitter dataset with 3078 entries, the highest accuracy reached 95%, attributed to the application of ensemble techniques, particularly boosting.