p-Index From 2021 - 2026
14.88
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Rekam : Jurnal, Fotografi, Televisi Animasi SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Teknologi Informasi dan Ilmu Komputer KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Jurnal Bioedukasi JOIN (Jurnal Online Informatika) Sistemasi: Jurnal Sistem Informasi Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Jurnal Sains Dan Teknologi (SAINTEKBU) JOURNAL OF APPLIED INFORMATICS AND COMPUTING JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Applied Information System and Management ILKOM Jurnal Ilmiah MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Journal of Economic, Management, Accounting and Technology (JEMATech) KOMPUTIKA - Jurnal Sistem Komputer Jambura Journal of Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Bitnet: Jurnal Pendidikan Teknologi Informasi EDUMATIC: Jurnal Pendidikan Informatika METIK JURNAL Building of Informatics, Technology and Science Gema Wiralodra Dinasti International Journal of Education Management and Social Science Jurnal Tecnoscienza Generation Journal Jurnal Mnemonic Journal Cerita: Creative Education of Research in Information Technology and Artificial Informatics PRAJA: Jurnal Ilmiah Pemerintahan JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) JIKA (Jurnal Informatika) Community Development Journal: Jurnal Pengabdian Masyarakat Jurnal Perangkat Lunak Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) Jurnal Teknologi Informatika dan Komputer Journal of Computer Networks, Architecture and High Performance Computing Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) JINAV: Journal of Information and Visualization International Journal of Artificial Intelligence and Robotics (IJAIR) Mitra Mahajana: Jurnal Pengabdian Masyarakat Jurnal Informatika dan Teknologi Komputer ( J-ICOM) DEVICE Djtechno: Jurnal Teknologi Informasi JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem dan Komputer JURNAL STUDIA KOMUNIKA Jurnal Pengabdian Seni KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen Journal Computer Science and Informatic Systems : J-Cosys Jurnal Mandiri IT Sulawesi Tenggara Educational Journal JURNAL PAI: Jurnal Kajian Pendidikan Agama Islam Jurnal Sisfotek Global International Journal Artificial Intelligent and Informatics Jurnal Informatika Teknologi dan Sains (Jinteks) Journal of Innovation Research and Knowledge Malcom: Indonesian Journal of Machine Learning and Computer Science Nusantara of Engineering (NOE) Jurnal Bangkit Indonesia Jurnal Multidisiplin Sahombu COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi JEC (Jurnal Edukasi Cendekia) Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) SmartComp Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Scientific Journal of Informatics Pengabdian Seni Jurnal Sistem Informasi Komputer dan Teknologi Informasi Jurnal TAM (Technology Acceptance Model) Jurnal Sistem Informasi dan Teknologi Informasi Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Prediksi Kebakaran Hutan Ibu Kota Nusantara Menggunakan Produk MODIS dengan Algoritma Regresi Linear, Gradient Boosting dan Decision Tree Mangun, Syamsul Syahab; Kusrini, Kusrini
Jambura Journal of Informatics VOL 7, N0 1: APRIL 2025
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jji.v1i1.30926

Abstract

Forest Fires in the Capital City of the Archipelago (IKN) threaten environmental sustainability and sustainable development, but accurate predictions are still hampered by the complexity of trigger factors such as weather variability and data uncertainty, so this study aims to develop a machine learning-based forest fire prediction model by utilising MODIS (Moderate Resolution Imaging Spectroradiometer) data, including surface temperature and thermal anomalies, by comparing three algorithms namely Linear Regression, Gradient Boosting Regressor (GBR), and Decision Tree Regressor (DTR). Performance evaluation using RMSE (Root Mean Square Error) and accuracy metrics showed GBR as the best model with 98.84% accuracy followed by DTR 96.39%, while R² values close to 1.0 in both models indicated the ability to explain data variability optimally, in contrast to linear regression which showed significant limitations. Thus, these findings prove the superiority of ensemble algorithms such as GBR in handling non-linearity of forest fire data and have practical implications on its potential integration into early warning systems to improve the effectiveness of  fire mitigation around the IKN region.Kebakaran Hutan di Ibu Kota Nusantara (IKN) mengancam kelestarian lingkungan dan pembangunan berkelanjutan, namun prediksi akurat masih terhambat oleh kompleksitas faktor pemicu seperti variabilitas cuaca dan ketidakpastian data, sehingga penelitian ini bertujuan mengembangkan model prediksi kebakaran hutan berbasis machine learning dengan memanfaatkan data MODIS (Moderate Resolution Imaging Spectroradiometer), termasuk suhu permukaan dan anomali termal, dengan membandingkan tiga algoritma yaitu Regresi Linear, Gradient Boosting Regressor (GBR), dan Decision Tree Regressor (DTR). Evaluasi performa menggunakan metrik RMSE (Root Mean Square Error) dan akurasi yang menunjukan GBR sebagi model terbaik dengan akurasi 98,84% diikuti DTR 96,39%, sementara  nilai R² mendekati 1.0 pada kedua model mengindikasikan kemampuan menjelaskan variabilitas data secara optimal, berbeda dengan regresi linear yang menunjukkan keterbatasan signifikan, sehingga temuan ini membuktikan keunggulan algoritma seperti GBR dalam menangani non-linearitas data kebakaran hutan dan berimplikasi praktis pada potensi integrasinya ke dalam sistem peringatan dini untuk meningkatkan efektivitas mitigasi kebakaran di sekitar wilayah IKN.
Analisis Sentimen Omnibus Law di Twitter dengan Machine Learning dan Teknik Resampling Syafutra, Arif Dwi; Kusrini, Kusrini
Jambura Journal of Informatics VOL 7, N0 1: APRIL 2025
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jji.v1i1.30935

Abstract

The Omnibus Law has been controversial in Indonesia since its enactment in 2020, sparking widespread public debate on social media platforms, particularly Twitter. This study aims to classify public sentiment toward the Omnibus Law using machine learning algorithms and resampling techniques to address data imbalance. Twenty thousand tweets were collected via web scraping, processed using Natural Language Processing (NLP) methods, and automatically labeled through a lexicon-based approach. The final dataset consisted of 17,184 tweets categorized into positive and negative sentiments. Sentiment classification models were developed using Support Vector Machine (SVM), Random Forest, and Multinomial Naïve Bayes, with Synthetic Minority Oversampling Technique (SMOTE) and Random Undersampling applied to enhance model performance. Evaluation results show that SVM combined with SMOTE achieved the highest performance with an accuracy of 93.08%, a recall of 92.85%, and a precision of 92.44%, outperforming other algorithms. These findings highlight that resampling techniques, particularly SMOTE, significantly improve classification performance in handling imbalanced datasets. This study emphasizes the importance of selecting appropriate algorithms and balancing strategies to enhance sentiment analysis accuracy based on social media data. Furthermore, the results open opportunities for future research to explore deep learning-based approaches for more complex public opinion analysis.Omnibus Law telah menjadi isu kontroversial di Indonesia sejak pengesahannya pada tahun 2020 yang mendorong perdebatan luas di media sosial, khususnya Twitter. Penelitian ini bertujuan untuk mengklasifikasikan sentimen publik terhadap Omnibus Law menggunakan algoritma machine learning dan teknik resampling untuk mengatasi ketidakseimbangan data. Data sebanyak 20.000 tweet dikumpulkan melalui web scraping, diproses dengan metode Natural Language Processing (NLP), dan dilabeli secara otomatis menggunakan pendekatan berbasis lexicon. Dataset akhir terdiri atas 17.184 tweet dengan kategori sentimen positif dan negatif. Model klasifikasi dikembangkan menggunakan Support Vector Machine (SVM), Random Forest, dan Multinomial Naïve Bayes, dengan penerapan teknik Synthetic Minority Oversampling Technique (SMOTE) dan Random Undersampling untuk meningkatkan performa. Hasil evaluasi menunjukkan bahwa SVM dengan SMOTE menghasilkan akurasi tertinggi sebesar 93,08%, recall 92,85%, dan precision 92,44%, mengungguli algoritma lainnya. Temuan ini menunjukkan bahwa teknik resampling, khususnya SMOTE, secara signifikan memperbaiki performa klasifikasi dalam skenario data tidak seimbang. Penelitian ini menegaskan pentingnya kombinasi antara pemilihan algoritma yang tepat dan strategi balancing data untuk meningkatkan akurasi analisis sentimen berbasis media sosial. Studi ini juga membuka peluang penelitian lanjutan menggunakan pendekatan deep learning untuk klasifikasi opini publik yang lebih kompleks.
KLASIFIKASI PENGENALAN WAJAH SISWA PADA SISTEM KEHADIRAN DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) Sarawan, Tommy; Kusrini, Kusrini
Djtechno: Jurnal Teknologi Informasi Vol 6, No 1 (2025): April
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/djtechno.v6i1.6017

Abstract

Pengelolaan kehadiran yang konvensional sering kali memakan waktu dan rentan terhadap kesalahan manusia. Oleh karena itu, diperlukan suatu inovasi untuk meningkatkan sistem pengelolaan kehadiran yang lebih akurat, cepat, dan efisien. Pengenalan wajah telah menjadi salah satu teknologi yang semakin populer dalam berbagai aplikasi, termasuk dalam bidang pendidikan. Teknologi ini menawarkan solusi yang efisien dan inovatif untuk mengatasi tantangan dalam sistem kehadiran siswa. Artificial Intelligence, sebagai cabang dari ilmu komputer, bertujuan untuk menciptakan sistem yang mampu melakukan tugas-tugas yang biasanya membutuhkan kecerdasan manusia, seperti pengambilan keputusan, pengenalan pola, dan pembelajaran dari data. Salah satu algoritma yang dapat digunakan adalah Convolutional Neural Network (CNN) yang telah menunjukkan performa yang sangat baik dalam tugas pengenalan wajah, terutama dalam hal ekstraksi fitur dan klasifikasi gambar. Penelitian ini bertujuan untuk mengembangkan model klasifikasi pengenalan wajah siswa pada sistem kehadiran dengan menggunakan metode Convolutional Neural Network (CNN). Penelitian ini menyimpulkan bahwa melakukan retrain pada 50 layers akhir dan 4 layers custom dapat meningkatkan accuracy untuk arsitektur MobileNetV2 mencapai 25% sedangkan ResNetV2 mencapai 26%. Selain itu, skenario dua yang menggunakan arsitektur MobileNetV2 menghasilkan model terbaik dengan nilai precision 92%, recall 91% dan accuracy 91%.
Analisis Laporan Beban Kerja Dosen Pendidikan Agama Islam (PAI) pada Bidang Penelitian dengan menggunakan Metode Clustering Pratama, Muhammad Egy; Kusrini, Kusrini; Agastya, I Made Artha
JURNAL PAI: Jurnal Kajian Pendidikan Agama Islam Vol 4 No 1 (2025)
Publisher : Prodi Pendidikan Agama Islam IAINU Kebumen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33507/pai.v4i1.3150

Abstract

This study aims to classify research activities of Islamic Education lecturers based on Lecturer Workload Reports using the K-Means clustering method. The dataset includes research activities of PAI lecturers at UIN Sultan Aji Muhammad Idris Samarinda over the past three academic years. Classification was conducted by identifying publication types based on keywords and summarizing each lecturer’s activity. The results show variations in productivity, with many activities falling into the “others” category due to the lack of explicit publication descriptions. The K-Means method grouped lecturers into three clusters: Active, Moderately Active, and Less Active, based on the number of activities and total SKS. These findings can assist faculty leaders in formulating human resource development strategies and enhancing lecturers’ performance in supporting key performance indicators (KPI) and accreditation standards.
Leveraging Vector Quantized Variational Autoencoder for Accurate Synthetic Data Generation in Multivariate Time Series Diqi, Mohammad; Utami, Ema; Kusrini, Kusrini; Wibowo, Ferry Wahyu
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 24 No. 3 (2025)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i3.4514

Abstract

This study addresses the challenge of generating high-quality synthetic financial time series data, acritical issue in financial forecasting due to limited access to complete and reliable historical datasets.The aim of this research was to compare the performance of the standard Variational Autoencoder andthe Vector Quantized Variational Autoencoder (VQ-VAE) in generating synthetic multivariate time seriesdata using the Adaro Energy Indonesia stock dataset. The VQ-VAE incorporates a discrete latentspace to improve the structure and control of the data generation process, whereas the standard VAEutilizes a continuous latent space. This research method was based on the implementation of bothmodels, followed by a quantitative evaluation using statistical metrics, including mean absolute error(MAE), mean squared error (MSE), root mean squared error (RMSE), and R² score. This researchshowed that the VQ-VAE outperformed the standard VAE in replicating the statistical characteristicsof stock prices, as shown by lower error values and higher R² scores across all tested features. The discretelatent space of the VQ-VAE led to the generation of more structured and statistically consistentsynthetic data. The implications of these findings suggest that the VQ-VAE model is highly suitablefor financial forecasting applications and indicate the potential for future enhancements throughintegration with hybrid models, such as attention mechanisms or generative adversarial networks.
TESTING OF PIJAR SEKOLAH APPLICATION WITH LOAD TESTING METHOD USING LOCUST Prastyo, Rahmat; Kusrini, Kusrini; Kusnawi, Kusnawi
Jurnal TAM (Technology Acceptance Model) Vol 16, No 1 (2025): Jurnal TAM (Technology Acceptance Model)
Publisher : Institut Bakti Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56327/jurnaltam.v16i1.1790

Abstract

The Pijar Sekolah application is an application created to help the learning and teaching process. Pijar Sekolah has several features, such as attendance, assignments, exams, and grades. The feature that is widely accessed by users is the exam feature. Therefore, when many users use the application simultaneously, it is important to conduct performance test on the Pijar Sekolah application. This study purpose is to conduct performance test with the Load Testing method using Locust. Test was carried out with a gradually increasing number of users, the number of users as testers were 50, 100, 200, 400, and 800 with a ramp-up period of 1 second. The testing will be carried out in accordance with the examination process carried out using the Pijar Sekolah application by accessing Login, Login Status, Exam List, Start Exam, Question List, Exam Questions, and Submit Answers.  The results of the test show that the performance in terms of response time is stable when testing from 50 to 400, but in RPS (Request Per Second) the average value increases with the number of 800 users getting an average value of 33.83 RPS. However, the test with the number of 400 users get an error in submitting answers. When test with the number of users 800, the response time increases and there are several errors by getting responses of 502 and 422 for 0.033%. The results of this study can be used to determine which processes need to be improved in performance. So that the Pijar Sekolah application can be used by many schools in carrying out the exam process simultaneously.
Implementation of Blockchain for Integrated Civil Service Statistical Data (Case Study: Civil Service and Human Resource Development Agency of Madiun Regency, East Java Province) Huda, Syaiful; Kusrini, Kusrini; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 7, No 2 (2025)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v7i2.12170

Abstract

Digital transformation in personnel data management demands a transparent, secure, and integrated system to support data-driven decision-making and enhance accountability in personnel services. An integrated information system and personnel statistical data are necessary to assist leaders in analyzing staffing needs and making more accurate and efficient data-based policies, while also strengthening the principles of good governance through improved transparency and accountability. Therefore, the Personnel and Human Resource Development Agency of the Government of Madiun Regency, East Java, requires technology capable of effectively managing personnel information by offering security, transparency, and data integrity through a decentralized mechanism. Blockchain, as a distributed ledger technology, provides an innovative solution for maintaining data integrity and increasing public trust through permanent, encrypted, and validated transaction records within a decentralized network. The implementation of blockchain in the management of personnel statistical data remains limited, despite the technology’s ability to support real-time audit trails and reliable interactive data visualization. This study proposes a framework for integrating a relational database with smart contracts on the Ethereum network, by recording the hash of statistical data in the smart contract as proof of data authenticity. Data is retrieved from the database, hashed, and the hash is stored in the smart contract to ensure its integrity, with the results visualized in interactive charts. This framework is expected to improve transparency, accountability, and trust in personnel statistical data to support more accurate and efficient strategic decision-making.
Currency Exchange Rate Prediction Using Gated Recurrent Unit (GRU) with Historical Data and Economic Factor Adhani, Muhammad Azmi; Kusrini, Kusrini
Journal of Electrical Engineering and Computer (JEECOM) Vol 7, No 2 (2025)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v7i2.12385

Abstract

This study presents a currency exchange rate prediction model using a Gated Recurrent Unit (GRU) with historical price data and selected economic factors. Historical data, including Open, High, Low, and Close (OHLC) prices, were obtained from Yahoo Finance. Economic factor data, including Non-Farm Payrolls (NFP), Gross Domestic Product (GDP), Purchasing Managers Index (PMI), Retail Sales, and Durable Goods Orders, were collected from Trading View. Data preprocessing involved chronological sorting, missing value handling, feature scaling, and sequence generation. Multiple experiment cases were evaluated: historical data alone, historical data combined with all economic factors, and historical data combined with each individual factor. The GRU model achieved its best performance when incorporating historical data with Durable Goods Orders, indicating that this economic indicator provides significant predictive value, as reflected by the lowest RMSE (0.0076) and MAPE (0.0054), and the highest R² (0.9764) indicating that this economic factor provides significant predictive value. These findings highlight the importance of integrating selected economic factors into exchange rate prediction models to enhance forecasting accuracy.
Book Sales Forecasting with Bidirectional LSTM: Outlier Handling and Overfitting Reduction Using Clipping and Early Stopping Santosa, Hendriansyah; Kusrini, Kusrini
Dinasti International Journal of Education Management And Social Science Vol. 6 No. 6 (2025): Dinasti International Journal of Education Management and Social Science (Augus
Publisher : Dinasti Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38035/dijemss.v6i6.5449

Abstract

This study aims to predict book sales using a Bidirectional Long Short-Term Memory (LSTM) model combined with clipping and early stopping techniques to handle outliers and reduce overfitting. The dataset consists of daily book sales records with temporal and categorical variables. The preprocessing process includes feature engineering, logarithmic transformation, standardization, and clipping on the target variable. The dataset is formed in time-series format with a sliding window approach. The model is evaluated using MSE, MAE, RMSE, and R². The results show that the integration of clipping and early stopping provides optimal prediction performance, with an R² value of 0.87 and an RMSE of 0.44. These findings demonstrate the effectiveness of the Bidirectional LSTM approach in forecasting complex and dynamic book sales. This paper is part of the author’s undergraduate thesis at Universitas Amikom Yogyakarta.
DEGREE: Development and Validation of a User Experience Model for Digital Educational Games Using Cronbach’s Alpha and Fuzzy Logic Kurniawan, Mei Parwanto; Suyanto, M.; Utami, Ema; Kusrini, Kusrini
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4942

Abstract

The rapid growth of digital educational games demands an evaluation model that accurately captures user experience and adopts a human-centred approach. This study introduces DEGREE (Digital Educational Game Review and Evaluation Engine), an enhanced model extending MEEGA+ by incorporating two previously underrepresented dimensions: Control and Feedback. Using a quantitative approach, questionnaires were distributed to high school students who actively use Minecraft and Duolingo, yielding 4800 responses.Reliability analysis via Cronbach’s Alpha revealed that the Player Experience + Control combination achieved the highest score (α = 0.914), while the inclusion of Feedback reduced reliability (α = 0.864), leading to its exclusion in the final model. The DEGREE model consists of two core domains: Usability (Aesthetics, Learnability, Operability, Accessibility) and Player Experience (Focused Attention, Fun, Challenge, Social Interaction, Confidence, Relevance, Satisfaction, Perceived Learning, User Error Protection, Control). Evaluation scores were calculated using the Fuzzy Weighted Average (FWA) method and Mean of Maximum (MoM) defuzzification. The Control dimension emerged as the most influential (0.2735), followed by Fun (0.2664) and Satisfaction (0.2516), highlighting the significance of user agency in digital learning environments. The DEGREE model offers a statistically robust and user-oriented framework for evaluating educational games, delivering actionable insights for developers and educators to design more effective and engaging digital learning experiences. This study contributes a new validated and generalizable evaluation framework that strengthens the theoretical foundation of user experience assessment in educational game design.
Co-Authors AA Sudharmawan, AA Abdillah, Yahya Auliya Abdullah Sukri, M Iqbal Abdullah, Mochamad Fadillah Achmad Oddy Widyantoro Ade Pujianto, Ade Adhani, Muhammad Azmi Agastya, I Made Artha agung budi AGUS PURWANTO Ahmad Yusuf Aji Santoso, Bayu Aji Susanto Anom Purnomo Alfatta, Hanif Alva Hendi Muhammad Andi Muhammad Irfan Andi Sunyoto Andika, Roy Andriyanto, Rifki Angga Kurniawan Anggit Dwi Hartanto, Anggit Dwi Anggraeni, Meita Dwi Ardana, Wildan Muhammad Ardana, Wildan Muhammmad Ardiansyah, Fachri Ari Yuana, Kumara Arief Setyanto Arief, M Rudyanto Arief, Muhammad Rudyanto Arifuddin, Danang Arik Sofan Tohir Aris Subadi Arli Aditya Parikesit Asnawi, Muhamad Fuat Atin Hasanah Azi, Amanda Aziz Muzani, Ma'ruf Aziz, Moh Abdul Azkar, Azkar Bayu Setiaji Béjar, Rodrigo Martínez Bentar Candra P Bernadhed, Bernadhed Bisono, Hadi Hikmadyo Braeken, An Buana, Yopy Tri Candra, Kurnia Khoirul da Silva, Bruno Darmawan, Eko Rahmad David Agustriawan DHANI ARIATMANTO Dzulhijjah, Dwi Ahmad Eko Pramono Eko Purwanto Ema Utami Emha Taufiq Luthfi Fatkhurrochman, Fatkhurrochman Fauzi, Moch Farid Fauzy, Marwan Noor Febrianti, Winda Febriyanti, Nada Rizki Ferry Wahyu Wibowo fitriyanto, nur Gifari, Okta Ihza Halimi, Ahmad Hamdikatama, Bimantyoso Hanafi Hanafi Hanif Al Fatta Hari Muktafin, Elik Haris, Ruby hartanto, david budi Hartono, Anggit Dwi Haryo, Wasis Hasan, Nur Fitrianingsih Hasan, Nurul Rahmawati Helmawati, Nita Herawati, Maimi Heri Abijono, Heri Herlinawati, Noor Hulvi, Alfajri I Putu Agus Ari Mahendra Ikhwanudin, Aolia Ilmawati, Fahma Inti Jeki Kuswanto Juwariyah, Siti Kasman, Haris Saktiawan Kurniasari, Iin Kusnawi , Kusnawi Kusnawi Kusnawi Lewu, Retzi Y. Linda, Kumara Dewi Listyanto, Ahmad Wildan López, Alba Puelles Lukman Bachtiar M. RUDYANTO ARIEF M. Suyanto, M. Madhika, Yudha Randa Mahendra, Awanda Putra Mangun, Syamsul Syahab Maradona, Maradona Mardiana Mardiana Martínez-Béjar, Rodrigo Masruri, Nizar Haris Masud, Ibnu maulana, fahrizal Megantara, Muhamad Arldi MEI PARWANTO KURNIAWAN Metha, Halifa Sekar Miftachuddin, Achmad Agus Athok Mohamad Firdaus, Mohamad Mohammad Diqi Mohammad Rezza Pahlevi Moningka, Nirwan Mufti Ari Bianto Muhamad Iksan, Muhamad Muhammad Resa Arif Yudianto Muktafin, Elik Hari Mulia Sulistiyono Muzakir, Muhammad MZ, Reza Rafiq Nasiri, Asro Ngaeni, Nurus Sarifatul Ni Nyoman Utami Januhari, Ni Nyoman Nugroho, Agung Nugroho, Hanantyo Sri Nuk Ghurroh Setyoningrum Nurmalasari, Maulidya Dwi Oktafiqurahman, Andi Olajuwon, Sayyid Muh. Raziq Onde, Mitrakasih La ode Oscar Samaratungga Pamoengkas, Muhamad Agoeng Pamungkas, Sapto Pradipta, Dody Prameswari, Sonia Anjani Prasetio, Agung Budi Prastyo, Rahmat Pratama, Muhammad Egy Puri, Fiyas Mahananing Purnamasari, Resti Putra, Andriyan Dwi Rachmawati Oktaria Mardiyanto RAMADHAN, SYAIFUL Rasyid, Magfirah Raynald Alfian Yudisetyanto Riduan, Nor Rizkayati, Anisa S, Muhamad Rois S, Muhammad Sabri Saleh, Robby Febrianur Samponu, Yohakim Benedictus Santosa, Hendriansyah SANTRI SANTRI Saputro, Moh. Rizal Bayu Sarawan, Tommy Sari, Yayak Kartika Selvy Megira, Selvy Semma, Andi Bahtiar Sentoso, Thedjo Setiawan, Moh. Arif Ma'ruf Setyanto, Arif Siswo Utomo, Mardi Slamet . Solikin, Arif Fajar Sudarmawan, Sudarmawan Sudarto Sudarto Swastikawati, Claudia Syafutra, Arif Dwi Syaiful Huda Tala, WD. Syarni Tampubolon, Jandri Tamuntuan, Virginia Toifur, Tubagus TONNY HIDAYAT Tri Nugroho, Arief triadin, Yusrinnatul Jinana Tukan, Ewaldus Ambrosius Ula, M. Izul Wahyu Pujiharto, Eka Wahyudi, Alfian Cahyo Wangsa, Sabda Sastra Wijaya, Jodi Wiwi Widayani, Wiwi Yanuargi, Bayu Yossy Ariyanto Yuana, Kumara Ari Yuza, Adela Zakaria Zakaria Zuhri, Muhammad Rafli Zulkarnain, Imam Alfath Zumarni, Zumarni