p-Index From 2021 - 2026
10.994
P-Index
This Author published in this journals
All Journal Techno.Com: Jurnal Teknologi Informasi Pixel : Jurnal Ilmiah Komputer Grafis SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Informatika dan Teknik Elektro Terapan CESS (Journal of Computer Engineering, System and Science) Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Komputer Terapan CogITo Smart Journal Indonesian Journal of Artificial Intelligence and Data Mining INOVTEK Polbeng - Seri Informatika JURNAL ILMIAH INFORMATIKA JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI JURNAL INSTEK (Informatika Sains dan Teknologi) ILKOM Jurnal Ilmiah INTECOMS: Journal of Information Technology and Computer Science Digital Zone: Jurnal Teknologi Informasi dan Komunikasi JURIKOM (Jurnal Riset Komputer) CSRID (Computer Science Research and Its Development Journal) JOISIE (Journal Of Information Systems And Informatics Engineering) EDUMATIC: Jurnal Pendidikan Informatika Jurnal Informatika dan Rekayasa Elektronik Zonasi: Jurnal Sistem Informasi JSR : Jaringan Sistem Informasi Robotik Jurnal Restikom : Riset Teknik Informatika dan Komputer Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Indonesia : Manajemen Informatika dan Komunikasi Jurnal J-PEMAS Jurnal Dinamika Informatika (JDI) Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI) sudo Jurnal Teknik Informatika Jurnal Pustaka AI : Pusat Akses Kajian Teknologi Artificial Intelligence Jurnal Algoritma JAIA - Journal of Artificial Intelligence and Applications Jurnal Komtekinfo Malcom: Indonesian Journal of Machine Learning and Computer Science DEVICE : JOURNAL OF INFORMATION SYSTEM, COMPUTER SCIENCE AND INFORMATION TECHNOLOGY Innovative: Journal Of Social Science Research SATIN - Sains dan Teknologi Informasi VISA: Journal of Vision and Ideas Jurnal Indonesia : Manajemen Informatika dan Komunikasi Jurnal Ilmiah Betrik : Besemah Teknologi Informasi dan Komputer The Indonesian Journal of Computer Science INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

Perbandingan Algoritma Naïve Bayes dan K-Nearest Neighbors untuk Klasifikasi Metabolik Sindrom: Comparison of Naive Bayes and K-Nearest Neighbors Algorithms for Metabolic Syndrome Classification Sholekhah, Fitriana; Putri, Adinda Dwi; Rahmaddeni, Rahmaddeni; Efrizoni, Luasiana
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 2 (2024): MALCOM April 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i2.1249

Abstract

Kondisi medis yang dikenal sebagai sindrom metabolik berpotensi meningkatkan kemungkinan penyakit jantung koroner, stroke, serangan jantung dan diabetes tipe 2. Sindrom metabolik juga dapat menyebabkan gula darah tinggi, kadar kolesterol rendah, obesitas secara bersamaan dan kelebihan lemak di daerah pinggang. Jika kombinasi dari ketiga kondisi ini terjadi maka dapat dikatakan penyakit ini  sebagai sindrom metabolik. Selain itu, sindrom metabolik juga dikaitkan dengan resistensi insulin, artinya dimana sel-sel tubuh tidak merespon baik terhadap efek insulin yang menyebabkan kadar gula darah tinggi karena gula tidak terserap ke dalam sel dengan baik. Sindrom metabolik tumbuh seiring meningkatnya obesitas di Asia, dengan perkiraan prevalensi yang terus naik. Ini berpotensi meningkatkan kasus penyakit kardiovaskular dan risiko kematian. Oleh karena itu, perlu dikembangkan model untuk mendiagnosis sindrom metabolik. Penelitian ini bertujuan untuk membandingkan kinerja algoritma klasifikasi utama, yaitu Naïve Bayes (NB) dan K-Nearest Neighbors (KNN) dalam mendeteksi sindrom metabolik. Hasil dari penelitian ini menunjukkan bahwa penggunaan algoritma Naïve Bayes menghasilkan akurasi sebesar 79%, sedangkan akurasi tertinggi dari algoritma K-Nearest Neighbors (KNN) adalah 82%. Kesimpulannya, dari hasil penelitian ini menunjukkan bahwa algoritma K-NN dengan pembagian data 50:50 lebih efektif dalam memprediksi dan mengklasifikasikan sindrom metabolik.
Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia : Comparison of Naive Bayes and SVM Algorithms in Twitter Sentiment Analysis on Electric Car Use in Indonesia Ningsih, Widia; Alfianda, Baginda; Rahmaddeni, Rahmaddeni; Wulandari, Denok
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 2 (2024): MALCOM April 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i2.1253

Abstract

Analisis sentimen dapat mengklasifikasikan sentimen berdasarkan polaritas teks dalam sebuah frasa dan menentukannya sebagai sentimen positif, negatif, atau netral. Data sentimen ini diperoleh dari jejaring sosial Twitter berdasarkan kueri bahasa Indonesia. Tujuan dari penelitian ini adalah untuk memahami opini publik mengenai topik tertentu yang dikomunikasikan di Twitter dalam bahasa Indonesia dan untuk mendukung upaya melakukan riset pasar terhadap opini publik. Data yang dikumpulkan melalui proses pelabelan manual, preprocessing, dan pemodelan, dan model klasifikasi dibuat melalui proses pelatihan. Teknik pengumpulan data dilakukan dengan mencari catatan menggunakan istilah pencarian “kendaraan listrik” di website Kaggle.com. Algoritma yang digunakan untuk membangun model klasifikasi berdasarkan data yang diperoleh pada penelitian ini adalah Algoritma Naive Bayes dan Support Vector Machine. Nilai akurasi implementasi klasifikasi yang diperoleh algoritma Naive Bayes sebesar 63,02% dan akurasi support vector machine sebesar 70,82%. Dapat disimpulkan bahwa algoritma support vector machine mempunyai nilai akurasi yang paling tinggi.
Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix: Implementation of Decision Tree Algorithm for Movie Recommendation and Rating Classification on the Netflix Platform Mukhsinin, Dimas Aditya; Rafliansyah, M; Ibrahim, Sang Adji; Rahmaddeni, Rahmaddeni; Wulandari, Denok
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 2 (2024): MALCOM April 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i2.1255

Abstract

Sebagai salah satu platform video streaming terbesar di dunia, Netflix telah berkembang pesat sejak pendiriannya pada tahun 1997, awalnya berfokus pada penyewaan DVD, namun kemudian beralih ke layanan streaming online pada tahun 2007. Dengan jutaan pelanggan global, Netflix terus berinovasi dengan paket langganan, produksi konten eksklusif, dan teknologi analisis data serta machine learning untuk meningkatkan pengalaman pengguna. Penelitian ini menerapkan algoritma Decision Tree untuk meningkatkan sistem rekomendasi dan klasifikasi rating di Netflix. Menggunakan dua dataset utama, movies_df dan ratings_df, penelitian melibatkan langkah-langkah pengumpulan dan penggabungan data, penentuan fitur dan variabel target, pembagian data, pelatihan model, serta evaluasi. Hasilnya mencakup evaluasi model Decision Tree dengan metrik akurasi, precision, recall, dan F1-score untuk setiap kategori rating, serta visualisasi grafik batang tentang jumlah rating film dan presentase rating dari 1-5. Rekomendasi film berdasarkan model Decision Tree juga disajikan, memberikan wawasan tentang peningkatan sistem rekomendasi di Netflix. Kesimpulan menunjukkan bahwa implementasi algoritma Decision Tree dapat meningkatkan akurasi rekomendasi film dan klasifikasi rating di Netflix, berkontribusi pada pengalaman pengguna yang lebih personal di era layanan streaming online.
Klasifikasi Komposisi Menu Makanan Olahan Terhadap Standar Gizi Balita Menggunakan Random Forest: Classification of Processed Food Menu Compositions Against Toddler Nutrition Standards Using Random Forest Rahmi, Rahmi; Herisnan, Diva Nabila; Daulay, Suandi; Rahmaddeni, Rahmaddeni
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 4 (2025): MALCOM October 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i4.2280

Abstract

Peningkatan kesadaran masyarakat akan pentingnya asupan gizi seimbang, khususnya pada anak usia dini, menjadi aspek krusial dalam upaya pencegahan malnutrisi dan masalah kesehatan terkait. Penelitian ini bertujuan untuk mengklasifikasikan komposisi menu makanan olahan terhadap standar gizi balita menggunakan pendekatan data mining dengan algoritma Random Forest. Dataset yang digunakan memuat kandungan nutrisi menu yang divalidasi terhadap standar Angka Kecukupan Gizi (AKG) untuk anak usia 1–5 tahun. Klasifikasi dilakukan ke dalam tiga kategori: seimbang, tidak seimbang, dan berlebihan. Penelitian melibatkan tahapan preprocessing data, feature selection, normalisasi, serta pelatihan model menggunakan Random Forest. Evaluasi menggunakan akurasi, presisi, recall, serta f1-score. Hasil pengujian diperoleh algoritma bahwa Random Forest menghasilkan kinerja terbaik dengan akurasi 90%. Dari 136 menu, 9 diklasifikasikan sebagai seimbang, 59 tidak seimbang, dan 68 berlebihan. Penelitian ini membuktikan jika algoritma Random Forest bisa dijadikan alat yang efektif dalam pemantauan gizi balita
ANALISIS PENYAKIT RABIES MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) Siregar, Azfar Huzaifah; Pratama, Agung; Rahmaddeni, Rahmaddeni; Cahyo, M Rizky Dwi
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6229

Abstract

Rabies adalah penyakit zoonosis yang sangat mematikan, disebabkan oleh virus rabies, dan memiliki dampak signifikan terhadap kesehatan masyarakat global. Deteksi dini dan analisis epidemiologi yang akurat merupakan langkah penting dalam upaya pencegahan dan pengendalian penyebaran penyakit ini.Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang berkontribusi pada kejadian gigitan anjing serta mengevaluasi kinerja algoritma pembelajaran mesin dalam memprediksi kasus gigitan. Analisis data menunjukkan bahwa ras Pit Bull dan wilayah dengan kepadatan penduduk tinggi memiliki risiko gigitan yang lebih tinggi. Evaluasi terhadap algoritma Support Vector Machine (SVM) dengan berbagai proporsi data latih dan uji menunjukkan kinerja yang stabil dan akurat. Model SVM mampu mengidentifikasi sebagian besar kasus gigitan dengan nilai akurasi rata-rata 74%. Penelitian ini mengindikasikan bahwa kombinasi antara analisis data dan pemodelan machine learning dapat menjadi alat yang berguna dalam mengidentifikasi individu yang berisiko tinggi mengalami gigitan anjing dan dalam merancang strategi pencegahan yang lebih efektif.
PREDIKSI DAN ANALISIS POLA PERUBAHAN IKLIM MENGGUNAKAN ALGORITMA GRADIENT BOOSTING Saputra, Pingki Ans; Irawan, Sandra Septi; Rahmaddeni, Rahmaddeni; Prianto, Robi; Hidayat, Taupik
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6230

Abstract

Peningkatan suhu global merupakan indikator utama perubahan iklim yang memengaruhi pola cuaca, kenaikan permukaan laut, dan frekuensi kejadian cuaca ekstrem. Penelitian ini bertujuan memprediksi dan menganalisis pola perubahan iklim, khususnya suhu global, menggunakan algoritma Gradient Boosting. Dataset yang digunakan dalam penelitian ini diambil dari tahun 2020 sampai dengan 2024 dari platform Kaggle berjumlah 53 baris. Bedasarkan pengujian yang dilakukan dengan menggunakan Gradient Boosting hasil prediksi dengan menggunakan metrik evaluasi RMSE dan MAE menunjukkan bahwa metode ini menghasilkan error yang yang kecil pada CO2 Concentration (ppm), dengan RMSE nya 10.43, MAE nya adalah 8.92. Untuk Sea Surface Temp (°C), RMSE nya 8.57, MAE nya adalah 7.42, menunjukkan kesalahan prediksi suhu permukaan laut yang relatif kecil.
KLASIFIKASI KESEHATAN MENTAL PADA USIA REMAJA MENGGUNAKAN METODE SVM Pratiwi, Elsa Eka; Aisy, Alaysha Rihadatul; Rahmaddeni, Rahmaddeni; Ananta, Nita
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6232

Abstract

Kesehatan mental merupakan faktor krusial dalam kehidupan individu, khususnya pada remaja yang rentan mengalami gangguan mental akibat tekanan hidup. Penelitian ini bertujuan untuk mengklasifikasikan kondisi kesehatan mental pada remaja dengan menerapkan metode SVM. Data yang digunakan dalam penelitian ini bersumber dari dataset kesehatan mental. Proses analisis mencakup tahap preprocessing data, eksplorasi data, penerapan teknik oversampling menggunakan SMOTE, serta optimasi model SVM melalui Grid Search Cross Validation. Hasil penelitian menunjukkan bahwa model SVM memberikan performa optimal dalam mengklasifikasikan kesehatan mental. Dengan pembagian data sebesar 60:40, model memperoleh akurasi sebesar 79%. Precision untuk kelas 0 mencapai 0.79, sementara kelas 1 sebesar 0.80, menunjukkan tingkat ketepatan model yang cukup baik dalam mengidentifikasi setiap kategori. Selain itu, recall untuk kelas 0 sebesar 0.83, mengindikasikan bahwa model mampu mendeteksi sebagian besar data yang benar-benar termasuk dalam kategori tersebut. Penelitian ini membuktikan bahwa metode SVM efektif dalam mengidentifikasi kondisi kesehatan mental pada remaja dan berpotensi menjadi alat pendukung dalam sistem deteksi dini gangguan mental.
Komparasi Multiple Linear Regression dan Decision Tree dalam Memprediksi Penetasan Penyu Jenis Chelonioidea Sp di Pulau Mangkai Agustriono; Septia, Rapindra; Rahmaddeni
JURNAL FASILKOM Vol. 14 No. 1 (2024): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v14i1.6844

Abstract

Pulau Mangkai yang terletak di Kabupaten Kepulauan Anambas Provinsi Kepulauan Riau. Secara geografis Pulau Mangkai terletak pada titik koordinat 03005’32’ LU dan 105035’00”BT dengan luas + 2,27 km. Pantai bagian utara di Pulau Mangkai merupakan tempat peneluran penyu. Konservasi salah satu langkah untuk menekan menurunnya populasi penyu, pengelolaan kawasan yang terintegrasi dengan tetap mempertimbangkan ekologi dan ekosistem serta mengkolaborasikan keberadaan spesies yang terancam punah, masyarakat di sekitar kawasan melalui mekanisme ekowisata minat khusus. Peran serta Machine Learnging dipelukan dalam menganalisis lama penetasan telur penyu pada pengelolaan kawasan konservasi. Tujuannya adalah untuk mencari algoritma yang terbaik dalam memprediksi lama waktu yang dibutuhkan dalam penetasan telur penyu untuk melihat ketersediaan relokasi sarang penyu dan menjadi paket wisata Turtle Watching. Pemodelan algoritma Multiple Linear Regression diperoleh nilai RMSE 3,96387 pada data training dan 4,95446 pada data testing, sementara pada Algoritma Decission Tree nilai RMSE pada data training 4,29728 dan 4,82765 pada data testing. Pengujian pada data aktual untuk model prediksi pada algoritma Multiple Linear Regression dan algoritma Decission Tree dengan kedalaman sarang = 47, jumlah telur = 173 butir, jenis penyu = sisik, tanggal bertelur = 27 April 2022. Algoritma Multiple Linear Regression memprediksi telur akan menetas selama 47,99 dibulatkan menjadi 48 hari, sementara Algoritma Decission Tree memprediksi telur akan menetas selama 48 hari.
Implementasi Algoritma SVM dan C4.5 dalam Klasifikasi Calon Penerimaan Beasiswa Rahmaddeni; Syarfi Aziz; Zairi Saputra; Hafid Azis Supahri; Ryan Ismanizan
Jurnal KomtekInfo Vol. 11 No. 3 (2024): Komtekinfo
Publisher : Universitas Putra Indonesia YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35134/komtekinfo.v11i3.524

Abstract

Dalam proses seleksi penerima beasiswa, berbagai kriteria dipertimbangkan secara menyeluruh. Nilai akademik, keadaan ekonomi, dan lainnya adalah beberapa faktor penting yang harus dipertimbangkan. Namun, dengan banyaknya calon yang mendaftar, proses seleksi manual menjadi tidak efisien dan rentan terhadap kesalahan. Penelitian ini menyarankan penggunaan algoritma Support Vector Machine (SVM) dan C4.5 untuk mengklasifikasikan calon penerima beasiswa. Tujuan dari penelitian ini untuk mengevaluasi kinerja kedua algoritma dalam memprediksi kandidat penerima beasiswa dengan data historis yang tersedia. Nilai rata-rata, penghasilan orang tua, dan aktivitas ekstrakurikuler adalah beberapa fitur yang relevan yang digunakan dalam dataset. Memanfaatkan metrik akurasi, presisi, recall, dan skor F1, kinerja kedua algoritma dievaluasi. Hasil eksperimen menunjukkan bahwa kedua algoritma mampu memberikan prediksi yang cukup akurat; algoritma C4.5 menunjukkan keunggulan dalam interpretabilitas hasil klasifikasi, sementara SVM menunjukkan keunggulan dalam akurasi prediksi. Ketika semua dikatakan dan dilakukan, implementasi algoritma SVM dan C4.5 dapat sangat membantu proses seleksi calon penerima beasiswa, mengurangi beban kerja manual, dan meningkatkan akurasi dan objektivitas proses. Selain itu, penelitian ini memberikan saran untuk membangun sistem pendukung keputusan yang lebih efisien yang berbasis pembelajaran mesin untuk manajemen penerimaan beasiswa. Dalam penelitian ini, model SVM dan C4.5 telah diuji untuk klasifikasi calon penerima beasiswa. Model C4.5 menunjukkan kinerja yang lebih baik dalam semua metrik evaluasi dibandingkan model SVM. Oleh karena itu, model C4.5 disarankan untuk digunakan dalam implementasi sistem klasifikasi calon penerima beasiswa. Namun, model SVM tetap relevan sebagai alat tambahan dalam validasi prediksi. Pengembangan lebih lanjut dengan tuning parameter dan eksplorasi algoritma ensemble dapat lebih meningkatkan kinerja sistem klasifikasi ini. Kata kunci: SVM, C4.5, seleksi, klasifikasi, beasiswa
KOMPARASI ALGORITMA MACHINE LEARNING UNTUK KLASIFIKASI KELULUSAN MAHASISWA Sigit, Rapel Aprilius; Kurniawan, Zuprizal; Rahmaddeni, Rahmaddeni
JSR : Jaringan Sistem Informasi Robotik Vol 8, No 1 (2024): JSR: Jaringan Sistem Informasi Robotik
Publisher : AMIK Mitra Gama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58486/jsr.v8i1.391

Abstract

Keberhasilan seorang mahasiswa dalam menyelesaikan studinya tepat waktu merupakan faktor kunci dalam pencapaian sebuah lembaga pendidikan tinggi. Algoritma machine learning memberikan pendekatan inovatif dalam analisis data serta prediksi berdasarkan pola yang teridentifikasi. Penelitian ini bertujuan membandingkan algoritma machine learning yang umum digunakan dalam mengklasifikasikan kelulusan mahasiswa, seperti Naive Bayes dan Decision Trees. Data yang diterapkan dalam penelitian ini diperoleh dari kaggle.com dan terdiri dari 4424 entri, yang terbagi menjadi tiga kategori: lulus, drop out, dan masih aktif. Data dapat digunakan untuk melakukan pelatihan setelah tahapan preprocessing, meliputi penghapusan data yang tidak relevan serta transformasi yang diperlukan. Setelah tahapan preprocessing selesai, dilakukan implementasi algoritma Naïve Bayes dan Decision Tree. Hasil penelitian menpresentasikan akurasi Naïve Bayes yakni 70,33% dan Decision Tree yakni 67,09%, dengan F1-score Naïve Bayes 61,81% dan Decision Tree 60,80%. Selain itu, hasil cross-validation menunjukkan akurasi Naïve Bayes sebesar 70,00% dan Decision Tree sebesar 68,29%. Dari hasil tersebut, terbukti bahwa Naïve Bayes memiliki performa yang lebih bagus jika dikomparasi dengan Decision Tree dalam konteks penelitian ini.
Co-Authors -, Dedek Ispandi A, M. Nakhlah Farid Adhitya Karel Maulaya Afiatuddin, Nurfadlan Agung Pratama Agung Pratama Agustin Agustin Agustin -, Agustin Agustin Agustin Agustin, Endy Wulan Agustriono Agustriono, Agustriono Aisy, Alaysha Rihadatul Aisyah Nurul Putri Akbar, Vitto Rezky Alaysha Rihadatul Aisy Aldino Evel Alfianda, Baginda Anam, M Khairul Ananta, Nita Anderson, Ranap Andi Kurnianto Andri Setiawan Anugraha, Yoga Safitra Aprilia, Fanesa Aprillian Kartino Arifin, Muhammad Amirul Asrofiq, Ahmad Aulia Putri Azdar, Qowiyyu Azfar Huzaifah Siregar B, Ilham Br.Situmorang, Elisabet Sinta Romaito Bunga Nanti Pikir Cahyo, M Rizky Dwi Chandra, Deni Cikita, Putri Cindy Syaficha Hardiana Dadynata, Eric Daulay, Suandi De Pani, Raihan Dedek Ispandi - Delfi Delfi, Delfi Deni Chandra Devi Efriadi Devi Puspita Sari, Devi Puspita Dhini Septhya Didik Sazali Diki Daryanto Dini, Ema Djamalilleil, Said Azka Fauzan Edwar Ali Efrizoni, Luasiana Efrizoni, Lusiana Eka, Wisnu Elma Novfuja Elwinda, Masyitah Erlin Ermy Pily, Annisa Khoirala Fadila, Rahmasari fadillah, m Fahreza, Rino Fakhrizal, M. Aggie Farhan Pratama Farida Try Puspa Siregar Fathoni, Muhammad Hafidhatul Fauzan, Aulia Fazri Fazri Febrio Waleska, Rangga Firman Akbar Firman, Muhammad Aditya fitri pratiwi, fitri Fransiskus Zoromi Fransiskus Zoromi Ginting, Alex Elanta Ginting, Lusiana Ginting, Steven Gusmansyah, Rafly Gusti Firmansyah, Mulia H A Supahri Habibah Br. Lumbantobing Hadi Asnal, Hadi Hafid Azis Supahri Hafidh, M. Hafidhatul Fathoni Hamdani Hamdani - Handoko Hanif Wira Saputra Hasnor Khotimah Hayami, Regiolina Hendra Saputra Hendrawan, Heri Herianto - Herianto Herianto Herisnan, Diva Nabila Huda, Isra Bil Ibrahim, Sang Adji Iftar Ramadhan Ihsan, Raja Muhammad Irawan , Sandra Septi Irawan, Sandra Septi Irsandi, Safril Jabbar, Fiqri Abdul Jamaris, Muhamad Jasmarizal Jasmarizal Junadhi Junadhi Jundi, Muhamad Jundi, Muhammad Khairuddin, M. Kharisma Rahayu Khusaeri Andesa Koko Harianto Koko Harianto Koko Harianto, Koko Kurniawan, Bambang Kurniawan, Fadly Kurniawan, Zuprizal Lili Marlia Lusiana Efrizoni M Fadhil Arfa M. Arifin M. Azzuhri Dinata M. Irpan Mahdiawan Nurkholifah Mahendra, Muhammad Ihza Mardainis Mardainis Mardainis Marhadi, Nanda Maryani, Lily Maulana, Fitra Michal Dennis Muhaimin, Abdi Muhamad Rizky Dwi Cahyo Muhammad Adji Purnama Muhammad afrizal Muhammad Bambang Firdaus Muhammad Dzaki Salman Muhammad Fajri Jamil Muhammad Fikri Hidayat Muhammad Ridho Al Fathan Mukhsinin, Dimas Aditya Najario, Dimas nanda, afri Nanda, Annisa Nasution , Zikri Hardyan Nita Ananta Nova Indriyani Nurjayadi Nurjayadi Nurkholifah, Mahdiawan Oktavianda Perdana Arifin, Satria Pratama , Nanda Rizki Pratama, Farhan Pratiwi, Elsa Eka Prianto, Robi Purnama, Muhammad Adji Putra, Aldino Putra, Andika Mahesa Putra, Febrianda Putri Utami, Putri Putri, Adinda Dwi Putri, Daffina Zahro R Ismanizan Rabbani, Salsabila Rafliansyah, M Rahmat Hidayatullah Rahmi Rahmi Ramadhani, Jilang Ramadhansyah, Donny Rashid, Rashid Ratna Andini Husen Refni Wahyuni Renaldi, Reno Rinaldi Rinaldi Rini Yanti Rino Fahreza Risky Harahap Risman Risman Rivaldi, Ahmad Rizki Astuti Rizky Rahman Salam Rohana Yola Parastika Hutasoit Rohid Rohid, Rohid Rometdo Muzawi, Rometdo Ryan Ismanizan Safitri, Dea Sahelvi, Elza Salman, Muhammad Dzaki Salsabila Rabbani Sapina, Nur Sapitri, Riska Mela Saputra, Candra Saputra, Haris Tri Saputra, Ilham Saputra, Juliandri Saputra, Pingki Ans Satria, Riyan Sazali, Didik Septhya, Dhini Septia, Rapindra Setiawan , Andri Setiawan, Ahmad Agung Sholekhah, Fitriana Sigit, Rapel Aprilius Sinaga, Leonardo Singgih - Widiantoro Siregar, Azfar Huzaifah Soni Suhada, Khairus Sukri Adrianto Sukri Adrianto Supian, Acuan Susandri, Susandri SUSANTI Susanti, Susanti Sutisna Sutisna Syahrul Imardi Syarfi Aziz Syarifuddin Elmi T. Sy. Eiva Fatdha Tahiyat, Hafsah Fulaila Taupik Hidayat, Taupik Torkis Nasution Tri Revaldo, Bagus Triyani Arita Fitri Try Puspa Siregar, Farida Ulfa, Arvan Izzatul Ulfah, Aniq Noviciate Umar, Yusran Unang Rio Uthami, Kurnia Vindi Fitria wahyu, haditya Wahyudi, Gustri Romi Wicaksono, M Teguh Wicaksono, M. Teguh Widia Ningsih, Widia Wirta Agustin Wirta Agustin Wulandari, Denok Yansyah Saputra Wijaya Yesaya Twin Situmorang Yogi Yunefri, Yogi Yoyon Efendi Yuda Irawan Yulia Fatma Yusran Umar Yusril Ibrahim zairi saputra Zairi Saputra Zalianti, Fenisya Zega, Wilman Zikri Hadryan nst Zuriatul Khairi Zuriatul Khairi