p-Index From 2020 - 2025
11.847
P-Index
This Author published in this journals
All Journal Techno.Com: Jurnal Teknologi Informasi Pixel : Jurnal Ilmiah Komputer Grafis SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Informatika dan Teknik Elektro Terapan CESS (Journal of Computer Engineering, System and Science) Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Komputer Terapan CogITo Smart Journal Indonesian Journal of Artificial Intelligence and Data Mining INOVTEK Polbeng - Seri Informatika JURNAL ILMIAH INFORMATIKA JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI JURNAL INSTEK (Informatika Sains dan Teknologi) ILKOM Jurnal Ilmiah INTECOMS: Journal of Information Technology and Computer Science MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Digital Zone: Jurnal Teknologi Informasi dan Komunikasi JURIKOM (Jurnal Riset Komputer) CSRID (Computer Science Research and Its Development Journal) JOISIE (Journal Of Information Systems And Informatics Engineering) EDUMATIC: Jurnal Pendidikan Informatika Jurnal Informatika dan Rekayasa Elektronik Zonasi: Jurnal Sistem Informasi JSR : Jaringan Sistem Informasi Robotik Jurnal Restikom : Riset Teknik Informatika dan Komputer Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Indonesia : Manajemen Informatika dan Komunikasi Jurnal J-PEMAS Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI) sudo Jurnal Teknik Informatika Jurnal Pustaka AI : Pusat Akses Kajian Teknologi Artificial Intelligence JAIA - Journal of Artificial Intelligence and Applications Jurnal Komtekinfo Malcom: Indonesian Journal of Machine Learning and Computer Science DEVICE : JOURNAL OF INFORMATION SYSTEM, COMPUTER SCIENCE AND INFORMATION TECHNOLOGY Innovative: Journal Of Social Science Research SATIN - Sains dan Teknologi Informasi VISA: Journal of Vision and Ideas Jurnal Indonesia : Manajemen Informatika dan Komunikasi Jurnal Ilmiah Betrik : Besemah Teknologi Informasi dan Komputer The Indonesian Journal of Computer Science INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI MYPERTAMINA MENGGUNAKAN METODE LONG SHORT-TERM MEMORY (LSTM) Saputra, Ilham; Rahmaddeni, Rahmaddeni; Rahmi, Rahmi; Satria, Riyan; Anderson, Ranap
INTECOMS: Journal of Information Technology and Computer Science Vol. 8 No. 5 (2025): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/rq7bjv10

Abstract

Aplikasi MyPertamina menghasilkan volume ulasan pengguna yang besar di Google Play Store, menjadikannya sumber wawasan yang krusial namun tidak efisien jika dianalisis secara manual. Penelitian ini membangun sebuah model analisis sentimen otomatis menggunakan metode deep learning dengan arsitektur Long Short-Term Memory (LSTM). Data ulasan yang dikumpulkan menggunakan teknik scrapping data dilakukan tahap preprocessing untuk memberikan data yang bersih, lalu model diuji dan menunjukkan performa yang sangat baik dengan akurasi mencapai 80%. Hasil analisis mengidentifikasi sentimen negatif didominasi oleh keluhan teknis seperti 'error' dan 'susah login', sedangkan sentimen positif menyoroti manfaat aplikasi yang 'membantu' dan 'praktis'. Penelitian ini membuktikan bahwa model yang dibangun efektif dalam menyediakan masukan strategis yang dapat ditindaklanjuti oleh PT Pertamina untuk meningkatkan kualitas layanan dan kepuasan pengguna
IMPLEMENTASI ALGORITMA SUPPORT VECTOR MACHINE DALAM MENGKLASIFIKASIKAN BERITA HOAX DI INDONESIA PADA MEDIA SOSIAL X Alaysha Rihadatul Aisy; Rahmaddeni; Azfar Huzaifah Siregar; Suandi Daulay; Nita Ananta
Jurnal RESTIKOM : Riset Teknik Informatika dan Komputer Vol 7 No 2 (2025): Agustus
Publisher : Program Studi Teknik Informatika Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/restikom.v7i2.457

Abstract

Berbagai jenis informasi bisa ditemukan di internet, mulai dari informasi yang valid kebenarannya sampai informasi yang tidak valid kebenarannya atau yang biasa disebut berita bohong (Hoax). Banyaknya berita hoax yang beredar dimasyarakat tentunya membuat masyarakat merasa tidak aman dan tidak nyaman serta kebingungan. Oleh karena itu tujuan penelitian ini adalah untuk mencari model klasifikasi berita hoax yang optimal dengan menggunakan algoritma Support Vector Machine. Data yang digunakan yaitu sebanyak 7.897 dari sumber github. Dalam penelitian ini digunakan beberapa splitting data untuk mendapatkan hasil akurasi terbaik. Akurasi terbaik di dapatkan pada splitting data 80:20 dengan akurasi 82.29%, precision 85.71%, dan recall 80.39%.
Penerapan Algoritma K-Medoids dalam Menganalisis Pola Pelanggan untuk Strategi Pemasaran De Pani, Raihan; Putri, Daffina Zahro; Ginting, Steven; Ginting, Lusiana; Rahmaddeni, Rahmaddeni
JATISI Vol 12 No 3 (2025): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v12i3.11542

Abstract

Customer segmentation is a strategic approach in data-driven marketing, allowing businesses to identify purchasing patterns to enhance the effectiveness of marketing campaigns. This study implements the K-Medoids algorithm to analyze customer behavior based on transaction data to form more accurate customer clusters. The data used was obtained from transaction history and underwent preprocessing steps such as cleaning and normalization. The clustering process was conducted by determining the optimal number of clusters using the Elbow Method and evaluated with the Silhouette Score. The results indicate that the optimal number of clusters is two, with a Silhouette Score of 0.5602, demonstrating well-separated clusters. Based on the clustering results, marketing strategies can be optimized by adjusting loyalty programs and providing personalized product recommendations to enhance customer engagement. With this approach, businesses can improve customer satisfaction and the efficiency of data-driven marketing. Keywords: K-Medoids, Clustering, Customer Segmentation, Marketing Strategy
Optimization of Customer Segmentation in the Retail Industry Using the K-Medoid Algorithm Agustin, Endy Wulan; Uthami, Kurnia; Ulfa, Arvan Izzatul; Efrizoni, Lusiana; Rahmaddeni, Rahmaddeni
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1977

Abstract

The retail industry faces significant challenges in understanding increasingly complex customer behavior due to massive data growth. One major obstacle is suboptimal customer segmentation, leading to ineffective marketing strategies. This study aims to optimize customer segmentation by implementing the K-Medoid algorithm, which excels in handling outliers and producing more stable clusters compared to K-Means. The dataset consists of over 10,000 customer transactions from a major retail company in Indonesia. The research process includes data collection and preprocessing, K-Medoid algorithm implementation, and performance evaluation using the silhouette score. The results indicate that the K-Medoid algorithm achieves more accurate customer segmentation, with a silhouette score of 0.39. The generated clusters exhibit greater homogeneity, enabling companies to design more targeted marketing strategies, such as specific discount offers and tailored loyalty programs. Based on these findings, the K-Medoid algorithm is recommended to enhance customer management effectiveness in the retail industry. This study contributes to selecting a more suitable algorithm for customer segmentation in the era of big data and opens opportunities for further exploration of hybrid algorithms and additional evaluation metrics.
Pengelompokan Kabupaten di Indonesia untuk Pemetaan Pendapatan Daerah Menggunakan Algoritma K-Means: Clustering of Regencies in Indonesia for Regional Revenue Mapping Using the K-Means Algorithm Wahyudi, Gustri Romi; Rahmaddeni, Rahmaddeni; Dini, Ema; Adrianto, Sukri; Fadila, Rahmasari
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2206

Abstract

Kesenjangan ekonomi antarwilayah merupakan permasalahan penting dalam pembangunan Indonesia, yang salah satunya dapat dilihat melalui variasi Produk Domestik Regional Bruto (PDRB) pada tingkat Kabupaten/ Kota. Penelitian ini bertujuan untuk memetakan kondisi ekonomi daerah di Indonesia dengan mengelompokkan Kabupaten/ Kota berdasarkan nilai PDRB tahun 2024 menggunakan algoritma K-Means clustering. Data penelitian diperoleh dari Badan Pusat Statistik (BPS), kemudian melalui tahap pra-pemrosesan berupa pembersihan data dan normalisasi Min-Max. Jumlah klaster ditentukan sebanyak empat kelompok (Sangat Rendah, Rendah, Sedang, dan Tinggi) dengan dasar pembagian kuartil, sehingga menghasilkan klasifikasi yang lebih objektif dan representatif terhadap distribusi data. Hasil penelitian menunjukkan bahwa mayoritas kabupaten/kota termasuk dalam kategori Rendah dan Sedang, sedangkan kategori Tinggi didominasi wilayah dengan basis industri dan jasa yang lebih maju. Evaluasi menggunakan Silhouette Score menghasilkan nilai 0,778, yang menandakan kualitas klasterisasi cukup baik dengan pemisahan antarkelompok yang jelas. Temuan ini mengindikasikan masih adanya ketimpangan distribusi ekonomi antarwilayah. Penelitian ini berkontribusi dalam menyediakan kerangka klasifikasi ekonomi daerah berbasis data kuantitatif yang dapat digunakan sebagai acuan dalam perumusan kebijakan pembangunan yang lebih merata serta menjadi dasar bagi penelitian lanjutan yang mengintegrasikan variabel sosial-ekonomi lainnya.
Perbandingan Algoritma XGBoost dan SVM Dalam Analisis Opini Publik Pemilihan Presiden 2024 Safitri, Dea; Susanti; Rahmaddeni; Fitri, Triyani Arita
The Indonesian Journal of Computer Science Vol. 13 No. 3 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i3.4041

Abstract

Pemilihan presiden dipengaruhi oleh berbagai faktor, termasuk latar belakang kandidat, masalah politik, dan preferensi ideologis, menjadikan pemilihan presiden sebagai subjek klasifikasi yang kompleks dan menarik. Menganalisis sentimen publik terhadap kandidat dan isu-isu politik memberikan wawasan penting tentang dinamika politik selama pemilihan. Penelitian ini berfokus pada pemilihan presiden dan membandingkan kinerja dua algoritma klasifikasi populer, XGBoost dan SVM, untuk menentukan metode mana yang lebih efektif. Setelah beberapa preprocessing teks dari 562 tweet, kami menemukan bahwa mayoritas pengguna Twitter cenderung memilih 347 tweet "Prabowo". Model Extreme Gradient Boosting (XGBoost) menunjukkan performa terbaik dengan presisi 78%, presisi 76%, recall 78%, dan skor f1 76%. Hasil ini menunjukkan bahwa XGBoost adalah model terbaik untuk mengklasifikasikan opini publik terkait pemilihan presiden 2024 dan memberikan kontribusi penting untuk memahami efektivitas metode klasifikasi dalam konteks pemilihan presiden.
Penerapan Algoritma Convolutional Neural Network Untuk Klasifikasi Penyakit Kanker Kulit Septhya, Dhini; Rahmaddeni; Susanti; Agustin
The Indonesian Journal of Computer Science Vol. 13 No. 4 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i4.4262

Abstract

The skin is an important organ that protects the human body, so early treatment is essential to prevent diseases such as skin cancer. Skin cancer is a serious disease that can be fatal ana requires high treatment costs. It ranks thirds after cervical cancer and breast cancer in Indonesia, with causative factors including genetics and exposure to UV radiation. Early detection and proper diagnosis are essential to increase the chances of recovery, so skin cancer classification is necessary to avoid delays in treatment. Deep Learning methods, particularly Convolutional Neural Network (CNN), have been shown to provide significant result in image classification with high accuracy. VGG16 and DenseNet121 are two popular CNN architecture used in image classification. This study aims to compare the performance of skin cancer classification using VGG16 and DenseNet121. The result show that the DenseNet121 architecture provides higher accuracy compared to the VGG16 architecture, with 93% accuracy for train data and 79% for test data, while the VGG16 architecture achieves 80% accuracy for train data and 74% for test data. These results show that the DenseNet121 architecture is superior in skin cancer classification, providing important information for more accurate diagnosis
Enhancing Multiple Linear Regression with Stacking Ensemble for Dissolved Oxygen Estimation Rahmaddeni, Rahmaddeni; Wicaksono, M. Teguh; Wulandari, Denok; Agustriono, Agustriono; Ibrahim, Sang Adji
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 24 No. 1 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i1.4280

Abstract

Maintaining optimal dissolved oxygen levels is essential for aquatic ecosystems, yet industrial and domestic waste has led to a global decline in dissolved oxygen. Traditional measurement methods, such as oxygen meters and Winkler titration, are often costly or time-consuming. This study aims to improve the Root Mean Square Error, Mean Absolute Error, and R2 values for estimating dissolved oxygen levels. The research method uses Multiple Linear Regression with various training and testing data splits, both before and after applying polynomial features. The model is further optimized using a stacking technique, with Random Forest Regressor and Gradient Booster Regressor as base models.The results show that the best model was achieved using the stacking ensemble technique with a 90:10 data split and polynomial features, yielding a Root Mean Square Error of 1.206, Mean Absolute Error of 0.990, and R2 of 0.670. This model has also met the assumptions of linear regression, such as residual normality, homoscedasticity, and no autocorrelation of residuals. This study concluded that the ensemble stacking technique and the addition of polynomial features could improve the model in estimating dissolved oxygen values and also contribute by providing an accessible user interface using the Gradio Framework, allowing users to estimate dissolved oxygen levels effectively.
Optimasi Performa K-Means melalui Hybrid Feature Engineering RFM dan Behavioral Analytics untuk Segmentasi Pelanggan: Optimizing K-Means Performance with Hybrid RFM and Behavioral Analytics for Customer Segmentation B, Ilham; Rahmaddeni, Rahmaddeni; Putra, Aldino; Najario, Dimas; Fakhrizal, M. Aggie
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 4 (2025): MALCOM October 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i4.2227

Abstract

Membagi pelanggan menjadi beberapa segmen itu krusial untuk kesuksesan strategi pemasaran. Dalam studi ini, kami mengusulkan metode kombinasi dengan memanfaatkan algoritma K-Means yang dipadukan dengan metrik Recency, Frequency, Monetary (RFM) serta wawasan dari analitik perilaku. Tujuan utama kami adalah untuk mengetahui seberapa besar pengaruh penambahan fitur RFM terhadap kualitas segmen yang dihasilkan. Untuk itu, pendekatan kami meliputi pembersihan data transaksi ritel, pembuatan fitur berbasis perilaku, dan penerapan dua metode klastering: K-Means standar dan versi yang ditingkatkan, yaitu RFM K-Means Aware++. Hasil klastering dievaluasi dengan visualisasi t-SNE, analisis distribusi klaster, dan pengukuran metrik validasi internal seperti Silhouette Score dan Davies-Bouldin Index. Temuan kami menunjukkan bahwa metode yang lebih baik dengan fitur RFM menghasilkan klaster yang lebih stabil, terpisah dengan baik, dan lebih akurat dalam mencerminkan perilaku pelanggan. Sebaliknya, model yang tidak menggunakan fitur RFM cenderung membentuk klaster yang tumpang tindih dan memberikan segmentasi yang kurang bermakna. Secara keseluruhan, studi ini menekankan bahwa rekayasa fitur yang tepat memiliki peran penting dalam meningkatkan performa algoritma klastering dan menawarkan segmentasi pelanggan yang lebih berharga
ANALISIS SENTIMEN ULASAN PENUMPANG MASKAPAI PENERBANGAN DI INDONESIA DENGAN ALGORITMA RANDOM FOREST DAN KNN Handoko; Ramadhansyah, Donny; Asrofiq, Ahmad; Rahmaddeni; Yunefri, Yogi
ZONAsi: Jurnal Sistem Informasi Vol. 6 No. 2 (2024): Publikasi Artikel ZONAsi: Periode Mei 2024
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/zn.v6i2.19177

Abstract

Penelitian ini mendalam pada analisis sentimen ulasan pelanggan terhadap maskapai penerbangan di Indonesia melalui NLP dan Machine Learning. Dalam prosesnya, data ulasan melibatkan serangkaian teknik, termasuk cleansing, case folding, tokenization, filtering, dan stemming, sementara sentimen diberikan label menggunakan lexicon afinn. Visualisasi kata-kata dominan dari ulasan diwujudkan melalui wordcloud untuk memberikan gambaran yang kaya dan intuitif. Ekstraksi fitur melibatkan metode TF-IDF, diikuti oleh proses klasifikasi menggunakan algoritma Random Forest dan K-Nearest Neighbor (KNN). Hasil evaluasi model menunjukkan tingkat akurasi yang memuaskan, dengan Random Forest mencapai 83% dan KNN mencapai 82%. Temuan ini memberikan wawasan yang dalam tentang preferensi pelanggan dan potensial masalah dalam pengalaman penerbangan di Indonesia, memberikan kontribusi pada pemahaman yang lebih holistik terhadap dinamika industri penerbangan.
Co-Authors -, Dedek Ispandi A, M. Nakhlah Farid Adhitya Karel Maulaya Afiatuddin, Nurfadlan Agung Pratama Agung Pratama Agustin Agustin Agustin -, Agustin Agustin Agustin Agustin, Endy Wulan Agustriono Agustriono, Agustriono Ahmad Rivaldi Aisy, Alaysha Rihadatul Aisyah Nurul Putri Akbar, Vitto Rezky Alaysha Rihadatul Aisy Aldino Evel Alfianda, Baginda Anam, M Khairul Ananta, Nita Anderson, Ranap Andi Kurnianto Andri Setiawan Anugraha, Yoga Safitra Aprilia, Fanesa Aprillian Kartino Arifin, Muhammad Amirul Asrofiq, Ahmad Aulia Putri Azdar, Qowiyyu Azfar Huzaifah Siregar B, Ilham Br.Situmorang, Elisabet Sinta Romaito Bunga Nanti Pikir Cahyo, M Rizky Dwi Chandra, Deni Cikita, Putri Cindy Syaficha Hardiana Dadynata, Eric Daulay, Suandi De Pani, Raihan Dedek Ispandi - Delfi Delfi, Delfi Deni Chandra Devi Efriadi Devi Puspita Sari, Devi Puspita Dhini Septhya Didik Sazali Diki Daryanto Dini, Ema Djamalilleil, Said Azka Fauzan Edwar Ali Efrizoni, Luasiana Efrizoni, Lusiana Eka, Wisnu Elma Novfuja Elwinda, Masyitah Erlin Ermy Pily, Annisa Khoirala Fadila, Rahmasari Fahreza, Rino Fakhrizal, M. Aggie Farhan Pratama Farida Try Puspa Siregar Fathoni, Muhammad Hafidhatul Fauzan, Aulia Fazri Fazri Febrio Waleska, Rangga Firman Akbar Firman, Muhammad Aditya fitri pratiwi, fitri Fransiskus Zoromi Fransiskus Zoromi Ginting, Alex Elanta Ginting, Lusiana Ginting, Steven Gusmansyah, Rafly H A Supahri Habibah Br. Lumbantobing Hadi Asnal, Hadi Hafid Azis Supahri Hafidh, M. Hafidhatul Fathoni Hamdani Hamdani - Handoko Hanif Wira Saputra Hasnor Khotimah Hayami, Regiolina Hendra Saputra Hendrawan, Heri Herianto - Herianto Herianto Herisnan, Diva Nabila Huda, Isra Bil Ibrahim, Sang Adji Iftar Ramadhan Ihsan, Raja Muhammad Irawan , Sandra Septi Irawan, Sandra Septi Irsandi, Safril Jabbar, Fiqri Abdul Jamaris, Muhamad Jasmarizal Jasmarizal Junadhi Junadhi Jundi, Muhamad Jundi, Muhammad Kharisma Rahayu Khusaeri Andesa Koko Harianto Koko Harianto Koko Harianto, Koko Kurniawan, Bambang Kurniawan, Fadly Kurniawan, Zuprizal Lili Marlia Lusiana Efrizoni M Fadhil Arfa M. Arifin M. Azzuhri Dinata M. Irpan Mahdiawan Nurkholifah Mardainis Mardainis Mardainis Marhadi, Nanda Maryani, Lily Maulana, Fitra Michal Dennis Muhaimin, Abdi Muhamad Rizky Dwi Cahyo Muhammad Adji Purnama Muhammad afrizal Muhammad Bambang Firdaus Muhammad Fajri Jamil Muhammad Fikri Hidayat Muhammad Ihza Mahendra Muhammad Ridho Al Fathan Mukhsinin, Dimas Aditya Najario, Dimas nanda, afri Nanda, Annisa Nasution , Zikri Hardyan Nita Ananta Nova Indriyani Nurjayadi Nurjayadi Nurkholifah, Mahdiawan Oktavianda Perdana Arifin, Satria Pratama , Nanda Rizki Pratama, Farhan Pratiwi, Elsa Eka Prianto, Robi Purnama, Muhammad Adji Putra, Aldino Putra, Andika Mahesa Putra, Febrianda Putri Utami, Putri Putri, Adinda Dwi Putri, Daffina Zahro R Ismanizan Rabbani, Salsabila Rafliansyah, M Rahmat Hidayatullah Rahmi Rahmi Ramadhani, Jilang Ramadhansyah, Donny Rashid, Rashid Ratna Andini Husen Refni Wahyuni Renaldi, Reno Rinaldi Rinaldi Rini Yanti Rino Fahreza Risky Harahap Risman Risman Rizki Astuti Rizky Rahman Salam Rohana Yola Parastika Hutasoit Rohid Rometdo Muzawi, Rometdo Ryan Ismanizan Safitri, Dea Sahelvi, Elza Salman, Muhammad Dzaki Salsabila Rabbani Sapina, Nur Sapitri, Riska Mela Saputra, Candra Saputra, Haris Tri Saputra, Ilham Saputra, Juliandri Saputra, Pingki Ans Satria, Riyan Sazali, Didik Septhya, Dhini Septia, Rapindra Setiawan , Andri Setiawan, Ahmad Agung Sholekhah, Fitriana Sigit, Rapel Aprilius Sinaga, Leonardo Singgih - Widiantoro Siregar, Azfar Huzaifah Soni Suandi Daulay Suhada, Khairus Sukri Adrianto Sukri Adrianto Supian, Acuan Susandri, Susandri SUSANTI Susanti, Susanti Sutisna Sutisna Syahrul Imardi Syarfi Aziz Syarifuddin Elmi T. Sy. Eiva Fatdha Tahiyat, Hafsah Fulaila Taupik Hidayat, Taupik Tri Revaldo, Bagus Triyani Arita Fitri Try Puspa Siregar, Farida Ulfa, Arvan Izzatul Ulfah, Aniq Noviciate Umar, Yusran Unang Rio Uthami, Kurnia Vindi Fitria wahyu, haditya Wahyudi, Gustri Romi Wicaksono, M Teguh Wicaksono, M. Teguh Widia Ningsih, Widia Wirta Agustin Wirta Agustin Wulandari, Denok Yansyah Saputra Wijaya Yesaya Twin Situmorang Yogi Yunefri, Yogi Yoyon Efendi Yuda Irawan Yulia Fatma Yusran Umar Yusril Ibrahim Zairi Saputra zairi saputra Zalianti, Fenisya Zega, Wilman Zikri Hadryan nst Zuriatul Khairi Zuriatul Khairi