p-Index From 2020 - 2025
7.165
P-Index
Claim Missing Document
Check
Articles

PENGEMBANGAN BAHAN AJAR BERCIRIKAN PENEMUAN TERBIMBING DAN BERBANTUAN APLIKASI PADA MATERI UNTUK KELAS X SMK Zukhrufurrohmah Zukhrufurrohmah; Cholis Sadijah; Makbul Muksar
Jurnal Kajian Pembelajaran Matematika Vol 1, No 2 (2017): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (330.892 KB)

Abstract

Tujuan penelitian ini adalah mengembangkan bahan ajar berupa Lembar Kegiatan Siswa (LKS) bercirikan guided discovery dan berbantuan aplikasi grapher pada materi fungsi kuadrat untuk kelas X SMK yang valid, praktis dan efektif. Pengembangan bahan ajar bercirikan guided discovery dipilih karena berdasarkan hasil obsevasi peneliti, kegiatan pembelajaran perlu didukung dengan adanya bahan ajar sehingga siswa dapat aktif dalam pembelajaran. Sedangkan penggunaan aplikasi grapher diharapkan dapat membantu siswa menemukan konsep karakteristik grafik fungsi kuadrat dan mengarahkan hasil kecanggihan teknologi pada pembelajaran. Langkah pengembangan mengacu pada model pengembangan Plomp (2010:15). Langkah pertama, preliminary reseach, dilakukan peneliti dengan melakukan pengamatan kelas hingga diperoleh simpulan perlu adanya bahan ajar becirikan guided discovery dan berbantuan aplikasi grapher pada pembelajaran materi fungsi kuadrat. Langkah kedua, prototyping phase, dilakukan dengan merancang, membuat kemudian memvalidasi LKS, RPP dan instrumen penelitian. Langkah ketiga, assessment phase, dilakukan dengan menguji coba kepraktisan dan keefektifan bahan ajar pada pembelajaran. Berdasarkan hasil pengembangan diperoleh bahan ajar berupa LKS bercirikan guided discovery dan berbantuan aplikasi grapher pada materi fungsi kuadrat untuk kelas X SMK yang valid, memiliki nilai kepraktisan tinggi dan tingkat keefektifan yang baik
PENGEMBANGAN PERANGKAT PEMBELAJARAN MATEMATIKA DENGAN PENDEKATAN SAINTIFIK UNTUK MENINGKATKAN PENALARAN SISWA PADA MATERI PELUANG DI SMA KELAS XII Yusma Ria Zulaicha; Makbul Muksar; Abdur Rahman As'ari
Jurnal Kajian Pembelajaran Matematika Vol 5, No 1 (2021): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v4i22020p57-63

Abstract

Penelitian ini dimaksudkan untuk mengembangkan perangkat pembelajaran matematika berbasis pendekatan saintifik untuk meningkatkan penalaran siswa pada materi peluang di SMA kelas XII yang valid, praktis, dan efektif. Model pengembangan yang digunakan dalam penelitian ini adalah model Dick and Carey. Perangkat pembelajaran yang dikembangkan berupa RPP dan LKS. RPP dan LKS disusun dengan mengacu pada pendekatan saintifik yang memuat 5M (mengamati, menanya, mengumpulkan informasi, menalar, mengomunikasikan). LKS yang disusun juga memuat langkah penalaran model Polya yaitu: 1) pengamatan terhadap suatu permasalahan, 2) perumusan dugaan dari permasalahan tersebut, 3) generalisasi, dan 4) verifikasi dugaan menggunakan permasalahan baru. Dari penelitian ini telah dihasilkan perangkat pembelajaran yang valid, praktis, dan efektif.Keywords: pendekatan saintifik, penalaran model Polya, model Dick and Carey, peluang
Routines’ errors when solving mathematics problems cause cognitive conflict Enditiyas Pratiwi; Toto Nusantara; Susiswo Susiswo; Makbul Muksar
International Journal of Evaluation and Research in Education (IJERE) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijere.v11i2.21911

Abstract

Many studies showed that cognitive conflict often occurs in learning and when solving mathematics problems. However, very few studies have looked at cognitive conflicts in solving mathematics problems, incredibly improper fraction problems. This descriptive qualitative study described and analyzed students’ errors in solving mathematics problems using a commognitive perspective. The data was collected using a test sheet instrument, where students do the test think-aloud. The answers on the student test sheets were analyzed by adjusting the think-aloud that was carried out, and then the interview process was carried out as a form of triangulation of the method in the study. The data analysis results showed that there was a routine error that causes cognitive conflict when solving the improper fraction problem. The error that occurred indicates that the routine can and cannot resolve the cognitive conflict that occurs. This study’s findings indicated the importance of routine procedures to be understood so that their use is appropriate for solving mathematical problems.
Assessing students’ errors in mathematical translation: From symbolic to verbal and graphic representations Nurrahmawati Nurrahmawati; Cholis Sa'dijah; Sudirman Sudirman; Makbul Muksar
International Journal of Evaluation and Research in Education (IJERE) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijere.v10i1.20819

Abstract

Translation skills are very important possessed by students, but currently, there are still many students who have difficulty in translating between representations. The purpose of this study is to analyze students' errors in translating from symbolic representations to verbal and graphic representations. This research was descriptive study with qualitative approach. Tests are given to junior high school students. From the results of data analysis, it is obtained that in translating from symbolic to verbal forms (problems in daily life) that are following the given system of equations, students are still unable to make representations correctly. When students are asked to translate into graphical form, students are still unable to draw complete graphs and errors made by students are misinterpretation and implementation errors, so they cannot maintain the semantic congruence between source representation and target representation. Based on this, it is necessary to make a learning plan that can improve students’ ability to translate between representations.
Metode Level Set pada Hyperbolic Mean Curvature Flow Vita Kusumasari; Makbul Muksar; Tjang Daniel Chandra; Kridha Pusawidjayanti
Jurnal Mercumatika : Jurnal Penelitian Matematika dan Pendidikan Matematika Vol 5, No 2 (2021)
Publisher : Universitas Mercu Buana Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26486/jm.v5i2.1437

Abstract

Pada artikel ini, metode level set diterapkan pada masalah pergerakan kurva berdasarkan hyperbolic mean curvature flow. Simulasi yang dilakukan meliputi masalah hyperbolic mean curvature flow dan hyperbolic mean curvature flow dengan kendala. Realisasi pergerakan kurva pada kedua permasalahan masing-masing menggunakan algoritma Hyperbolic MBO (HMBO) dan algoritma HMBO yang telah dimodifikasi untuk masalah dengan kendala. Kurva initial pada kedua permasalahan berupa lingkaran. Hasil simulasi yang ditampilkan berupa plot level set nol dan plot tiga dimensi. Hasil pergerakan kurva pada kedua permasalahan menunjukkan bahwa kurva semakin menyusut. Untuk masalah hyperbolic mean curvature flow, kurva akan menyusut dan menghilang. Sedangkan pada masalah hyperbolic mean curvature flow dengan kendala, kurva akan menyusut dan berhenti bergerak setelah menyentuh kurva kendala.
ANALYSIS OF STUDENTS’ MATHEMATICAL LITERACY SKILL IN SOLVING PISA MATHEMATICAL PROBLEMS Yusfa Lestari; Abdur Rahman As’ari; Makbul Muksar
MaPan : Jurnal Matematika dan Pembelajaran Vol 9 No 1 (2021): JUNE
Publisher : Department of Mathematics Education Faculty of Tarbiyah and Teacher Training Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/mapan.2021v9n1a7

Abstract

This study aims to determine students’ mathematical literacy skills in solving PISA mathematical problems. Mathematical literacy is the capacity of individuals to formulate, use, and interpret mathematics in various contexts. Students’ mathematical literacy skills can be seen in the way students work in solving PISA questions. This study is qualitative descriptive research. Data from the analysis of students’ mathematical literacy skills were obtained through tests in the form of descriptive questions adopted from PISA questions, analysis based on indicators of mathematical literacy skill according to PISA, and the interview results with students who worked on the PISA questions. This study shows that students’ mathematical literacy skills were in the medium to the low category; this can be seen from the percentage of students’ answer scores in working on PISA questions. Therefore, it is necessary to provide reasoning questions such as PISA questions to help students improve their mathematical literacy skills.
KESALAHAN REPRESENTASI PECAHAN PADA GARIS BILANGAN Tatik Retno Murniasih; Cholis Sadijah; Makbul Muksar; Susiswo Susiswo; Vivi Suwanti
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 9, No 2 (2020)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.375 KB) | DOI: 10.24127/ajpm.v9i2.2740

Abstract

Penelitian tentang analisis kesalahan representasi pecahan calon guru matematika penting karena pecahan berguna dalam kehidupan sehari-hari. Tujuan penelitian untuk menyelidiki kesalahan calon guru matematika dalam representasi tugas kepekaan pecahan pada garis bilangan. Tipe kesalahan dan indikator menunjukkan keterampilan representasi pecahan. Penelitian ini menggunakan pendekatan deskriptif kualitatif dengan 19 calon guru matematika sebagai calon subjek. Wawancara dilakukan pada 5 subjek yang dipilih. Pada wawancara, kami meminta mereka untuk mendeskripsikan jawaban mereka dalam merepresentasikan tugas kepekaan pecahan pada garis bilangan dan faktor-faktor yang menyebabkan kesalahan. Hasil penelitian menunjukkan dua kesalahan terbesar pada calon guru matematika, yaitu tidak terampil menggunakan estimasi, dan tidak terampil menggunakan benchmark. Temuan lain menunjukkan lebih banyak calon guru matematika yang melakukan kesalahan dalam representasi pecahan negatif daripada pecahan positif pada garis bilangan. Hal ini disebabkan adanya hambatan kognitif calon guru matematika dari pengetahuan sebelumnya dalam domain pecahan positif  ketika  diterapkan pada domain pecahan negatif. Sehingga lebih banyak calon guru matematika yang melakukan kesalahan dalam representasi pecahan negatif daripada pecahan positif pada garis bilangan. Faktor-faktor penyebabkan kesalahan representasi dari penugasan kepekaan pecahan pada garis bilangan adalah calon guru menganggap materi pecahan sulit, sulit membayangkan pecahan, mengalami kebingungan dan lupa dengan materi pecahan. Intervensi berbantuan media direkomendasikan untuk mengatasi ketidakmampuan calon guru menggunakan estimasi dan bencmark terutama dalam domain pecahan negatif.
IDENTIFIKASI BERPIKIR KRITIS MATEMATIKA SISWA KELAS X IPA-6 SMAK SANTO ALBERTUS MALANG Flavia Aurelia Hidajat; I Nengah Parta; Makbul Muksar
JIPM (Jurnal Ilmiah Pendidikan Matematika) Vol 4, No 2 (2016)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (322.58 KB) | DOI: 10.25273/jipm.v4i2.844

Abstract

This research is meant to identify the critical thinking of X grade students of Science-class in SMAK Santo Albertus, Malang. Data of this research is collected from students test result related to critical thinking test as well as the result of interview done by the researcher with the teacher and students. Data analysis will be done after the treatment and all data are collected. Data analysis technique used in this research is flow model which includes data reduction, data presentation, conclusion and verification. Identification result of students’ critical thinking of X grade in Science-6 class of SMAK Santo Albertus Malang shows that there are three levels in critical thinking, namely ; students with Thinking level of “Critical”, students with thinking level of “less critical”, and students with thinking level of “Not critical”. The result of this research provides information for teachers related to students’ critical thinking, therefore, this research can give some reflection for the teacher in designing the next Mathematics teaching activities and help teacher in designing standard teaching development which improves students’ critical thinking.
Proses Berpikir Mahasiswa Dalam Mengonstruksi Konsep Komposisi Fungsi Sudirman Sudirman; Subanji Subanji; Akbar Sutawidjaja; Makbul Muksar
Jurnal Pendidikan Sains Vol 3, No 4: Desember 2015
Publisher : Pascasarjana Universitas Negeri Malang (UM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1434.661 KB) | DOI: 10.17977/jps.v3i4.8152

Abstract

Abstract: The aim of this study was to describe the thought processes of students in constructing the concept of function composition. The subjects were students of the 2nd half of the course Basic Mathematics II. There are 9 students who were asked to complete the one-time function composition written and simultaneously saying out loud what they think. Furthermore, six students have been selected as subjects. Selection of subject considers their communication skills. From this research, it is found three types of the description of thought processes of students, namely: construction complete thinking structure type, construction complete pseudo-thinking structure type, and incomplete structure type thinking.Key Words: thinking, constructing the concept, function, composition functionAbstrak: Tujuan penelitian ini adalah untuk mendeskripsikan proses berpikir mahasiswa dalam mengon-struksi konsep komposisi fungsi. Subjek penelitian ini adalah mahasiswa semester 2 matakuliah Matemati-ka Dasar II. Sembilan mahasiswa diminta menyelesaikan masalah komposisi fungsi secara tertulis dan sekaligus mengucapkan dengan keras apa yang dipikirkan. Selanjutnya 6 mahasiswa dipilih sebagai subjek. Pemilihan subjek mempertimbangkan kemampuan berkomunikasi mereka. Dari penelitian ini di-temukan 3 tipe deskripsi proses berpikir mahasiswa, yaitu tipe struktur berpikir konstruksi lengkap, tipe struktur berpikir konstruksi lengkap semu, dan tipe struktur berpikir tidak lengkap.Kata kunci: proses berpikir, mengonstruksi konsep, fungsi, komposisi fungsi
Extrovert Students’ Communication Effectiveness in Solving Mathematical Problems Anna Nur Fadillah; Abdur Rahman As’ari; Makbul Muksar
Jurnal Pendidikan Sains Vol 8, No 3: September 2020
Publisher : Pascasarjana Universitas Negeri Malang (UM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jps.v8i3.14078

Abstract

Abstract:  The purpose of this article is to describe the effectiveness of communication of extroverted students in mathematical problem-solving. The trial subjects were two high school students in class XII who had extroverted personalities. Measurement of the level of similarity in understanding or effectiveness of communication seen based on the results of interviews with two research subjects. Based on observations during the problem-solving process and analysis of communication effectiveness, it is found that students' mathematical communication in solving problems is very effectiveAbstrak: Tujuan dari artikel ini adalah untuk mendeskripsikan efektivitas komunikasi siswa berkepribadian ekstrovert dalam pemecahan masalah matematis. Subyek uji coba adalah dua siswa kelas XII SMA yang memiliki kepribadian ekstrovert. Pengukuran tingkat kesamaan pemahaman atau efektivitas komunikasi dilihat berdasarkan hasil wawancara dengan dua subjek penelitian. Berdasarkan hasil pengamatan selama proses pemecahan masalah dan analisis efektivitas komunikasi didapatkan bahwa komunikasi matematis siswa dalam memecahkan masalah sangat efektif.
Co-Authors A.A. Ketut Agung Cahyawan W Abdur Rahman As’ari Adbur Rahman Agus Maqruf Akbar Sutawidjaja Al Afrin Uwais, Tito Aldino, Fals Andika Bagus Nur Rahma Putra, Andika Bagus Nur Rahma Anna Nur Fadillah Annesa Eka Norman Arif Hidayat Arif Hidayatul Khusna Aris Mustofa Ayu Dwi Setyaningtyas Bachriani, Ellsa Natassa Basuki Rahmat Masdi Siduppa Cahyani, Nia Cholis Sa’dijah Dedi Tiarno Dhia Suprianti Djoko Dwi Kusmayanto, Djoko Dwi Dwi Agus Sudjimat Dwiyana Dwiyana Dyah Triwahyuningtyas Dyah Triwahyuningtyas Eka Resti Wulan Elis Widyo Palupi Elly's Mersina Mursidik Endang Novita Tjiptiany Erry Hidayanto Fakhrur Razi Fals Aldino Fazlur Rahman Addakhil, Muhammad Flavia Aurelia Hidajat, Flavia Aurelia Hajar, Maya Umi Herjan Haryadi Herlina Ike Oktaviani Hery Widijanto I Ketut Suada I Nengah Parta I Wayan Sumberartha Ibrohim Imam Nawawi, Imam Insih Kawedhar Intan Sari Rufiana Ipung Yuwono Ipung Yuwono Ipung Yuwono Jojor Janni Astuti Sigalingging Khair, Muhammad Sa'duddien Kridha Pusawidjayanti Lathiful Anwar Marni Zulyanty, Marni Mira Amelia Amri, Mira Amelia Muhammad Ilham Setiadi Nafi'atuz Zahro Nia Cahyani Nibrisatul Hana Nurma Wahyu Utami Nurrahmawati Nurrahmawati Nurrahmawati Oktavia Sulistina Olga Putriana Wati Peni Purwanti Pratiwi, Enditiyas Pratiwi, Rima Anissa Prihanto Trihutomo Purwanto Purwanto Purwanto, Purwanto Putri, Reni Albertin Qohar, Abd. Rachmat Wasqita Ratna Sari Dewi Reza Aprilia Resterina Ririn Puji Utami Rosyidah, Ana Siti Rudi Prasetyo Ruhil Ismafitri Rustanto Rahardi S Sudirman, S Samuntya, Fitri Senja Richmasari Siti Mufidah Slamet Solichin Solichin Subanji Subanji Sudirman Sudirman Sudirman Sukoriyanto Susiswo Suwanti, Vivi Syafitri, Rafi Syamsul Hadi Tatik Retno Murniasih Tjang Daniel Chandra Toto Nusantara Vita Kusumasari Worowirastri E., Dyah Yulianti, Erni Yuni Rahmawati Yusfa Lestari Yusma Ria Zulaicha Yusma Riza Zulaicha Zukhrufurrohmah, Zukhrufurrohmah