p-Index From 2020 - 2025
21.821
P-Index
This Author published in this journals
All Journal TEKNIK INFORMATIKA JURNAL SISTEM INFORMASI BISNIS Voteteknika (Vocational Teknik Elektronika dan Informatika) Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Jurnas Nasional Teknologi dan Sistem Informasi Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Riau Journal of Computer Science JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research RABIT: Jurnal Teknologi dan Sistem Informasi Univrab Jurnal Penelitian Pendidikan IPA (JPPIPA) Indonesian Journal of Artificial Intelligence and Data Mining Rang Teknik Journal ILKOM Jurnal Ilmiah MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Journal of Information Technology and Computer Engineering Jambura Journal of Informatics ComTech: Computer, Mathematics and Engineering Applications Jusikom: Jurnal Sistem Informasi Ilmu Komputer bit-Tech Systematics Jurnal Sistem informasi dan informatika (SIMIKA) Jurnal Sistim Informasi dan Teknologi Jurnal Informasi dan Teknologi Jurnal Informatika Ekonomi Bisnis Journal of Robotics and Control (JRC) Journal of Applied Engineering and Technological Science (JAETS) JATI (Jurnal Mahasiswa Teknik Informatika) Jurnal Ilmiah Manajemen Kesatuan Dinasti International Journal of Digital Business Management JUKI : Jurnal Komputer dan Informatika Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Journal of Applied Data Sciences Jurnal Computer Science and Information Technology (CoSciTech) Journal of Applied Computer Science and Technology (JACOST) Journal of Computer Scine and Information Technology Bulletin of Computer Science Research Jurnal Penelitian Inovatif Jurnal Ipteks Terapan : research of applied science and education Jurnal Pustaka AI : Pusat Akses Kajian Teknologi Artificial Intelligence Jurnal Teknoif Teknik Informatika Institut Teknologi Padang Jurnal Komtekinfo Jurnal Sistim Informasi dan Teknologi Jurnal Administrasi Sosial dan Humaniora (JASIORA) Innovative: Journal Of Social Science Research e-Jurnal Apresiasi Ekonomi Jurnal Informatika Ekonomi Bisnis RJOCS (Riau Journal of Computer Science) SmartComp Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) JR : Jurnal Responsive Teknik Informatika Jurnal Responsive Teknik Informatika
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Bulletin of Computer Science Research

Analisis Data Mining dengan Metode K-Means Clustering Dalam Pengelompokan Penggunaan Alat Kontrasepsi Rahmad, Rahmad; Defit, Sarjon; Sovia, Rini
Bulletin of Computer Science Research Vol. 5 No. 5 (2025): August 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i5.750

Abstract

Family Planning (KB) is a strategic government effort to suppress population growth and improve the quality of life. The availability of various types of contraceptives can delay unwanted pregnancies, including in women facing increased pregnancy risks. Based on this, this study aims to cluster contraceptive use. The K-Means Clustering method is an unsupervised learning algorithm used to group data into several clusters based on similar characteristics. This algorithm works by minimizing the distance between the data and the cluster center (centroid). The advantages of K-Means are its simplicity and speed in processing large data. This research variable uses data from the 2024 Family Data Collection of the BKKBN Representative Office of West Sumatra Province in West Pasaman Regency. Based on the application of the K-Means Clustering method to the contraceptive use data, the grouping is obtained into three clusters: low use of MKJP contraceptives, moderate use of MKJP contraceptives, and high use of MKJP contraceptives. This study contributes in the form of a data mining-based analysis model that is able to group contraceptive use patterns in a more structured and objective manner. By applying the K-Means Clustering method, this study produces information that can be used to identify the characteristics of each user group, so that relevant agencies can design more targeted contraceptive counseling and distribution strategies.
Analisis Algoritma K-Means Clustering Dalam Pengelompokan Prestasi Belajar Siswa Menengah Atas (SMA) Dila, Rahmah; Defit, Sarjon; Arlis, Syafri
Bulletin of Computer Science Research Vol. 5 No. 5 (2025): August 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i5.751

Abstract

The increased use of social media among high school students has a positive and negative impact on academic achievement. This can be seen from changes in learning patterns, concentration levels, and students' motivation in participating in learning activities. This study aims to classify student learning achievement based on the level of social media use using the K-Means Clustering algorithm. K-Means Clustering is one of the main methods in data mining.  which is a technique of grouping data based on the similarity of its characteristics. The parameters used in analyzing this study are Social Media Duration (X1), Active Time (X2), Main Platform (X3), Main Goal (X4), Social Media Access Time While Learning (X5), Social Media Addiction (X6), Social Media Addiction Level (X7), Number of Study Groups (X8) and Academic Average (X9). Based on the K-Means Clustering method, it has been proven to be able to group students based on the level of social media use. These results can be seen from the cluster category C0 (High) with 46 students, C1 (medium) with 80 students, and C2 (Low) with 72 students. The contribution of this research benefits students by helping them understand the relationship between social media usage habits and learning achievement, so as to encourage more effective time management.
Analisis Cluster Algoritma K-Means Untuk Pengelompokan Kondisi Gizi Balita Pada Posyandu Roza, Yesi Betriana; Defit, Sarjon; Arlis, Syafri
Bulletin of Computer Science Research Vol. 5 No. 5 (2025): August 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i5.752

Abstract

Toddler health is a crucial indicator of community and national development. Integrated Service Posts (Posyandu) play a key role in monitoring the nutritional status of toddlers through routine weight and height checks. This study aims to analyze toddler nutritional status using the K-Means Clustering algorithm, a non-hierarchical method that groups data based on centroid proximity. The data came from 98 toddlers at the Posyandu in Manggung Village, North Pariaman District, Pariaman City, including weight, height, weight-for-age, height-for-age, weight-for-height, and weight gain. The K-Means results showed a distribution of three clusters: C0 (undernourished) with 37 toddlers, C1 (severely malnourished) with 17 toddlers, and C2 (well-nourished) with 44 toddlers. The majority of toddlers were categorized as well-nourished. This research contributes to the rapid identification of toddler nutritional problems, enabling Posyandu staff to take appropriate preventive and corrective measures.
Model Deep Learning Berbasis Multilayer Perceptron untuk Identifikasi Demam Berdarah Dengue dan Tifus Nurhadi, Nurhadi; Defit, Sarjon; Nurcahyo, Gunadi Widi
Bulletin of Computer Science Research Vol. 5 No. 5 (2025): August 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i5.754

Abstract

Dengue Hemorrhagic Fever (DHF) and Typhus/Typhoid are two infectious diseases often found in tropical areas. In Indonesia, data shows that cases of DHF and typhoid are quite high, so a system is needed that can help doctors make faster and more accurate decisions based on blood test results. Based on the previous explanation, this study aims to apply the Deep Learning Multilayer Perceptron (MLP) method to be able to identify dengue fever and typhus. This study uses a Deep Learning-based Multilayer Perceptron approach for accurate classification of Dengue Fever, Typhoid Fever, and Normal cases using clinical blood parameters and selected symptoms. This methodology consists of several stages: dataset acquisition, preprocessing, model architecture design, training, and evaluation. The dataset was taken from Dumai City Hospital medical record data from 2023 to 2024, totaling 379 patient data used to identify Dengue Fever and Typhus using 7 clinical parameters as the main input obtained from laboratory examination results and patient clinical symptoms: Hemoglobin, Leukocyte, Platelet count, Hematocrit level, Headache, Abdominal pain, and diarrhea. Based on the results obtained, the application showed the best performance in classifying Dengue Fever, which is shown through the achievement of the model evaluation metrics as follows. The test results indicate that an increase in the amount of test data is directly proportional to the percentage of classification success achieved by the system. Based on the test results with 10% validation data, 70 % training data, and 20 % test data, the system showed very good performance with an overall accuracy of: 98.68% (Accuracy = 0.9868), which indicates a high level of success in classifying for the three classes, namely Normal, Dengue Fever, and Typhus.
Analisis Algoritma K-Means Clustering untuk Pengelompokan Rekomendasi Judul Proposal Tugas Akhir Mahasiswa Yulihartati, Sandra; Defit, Sarjon; Nurcahyo, Gunadi Widi
Bulletin of Computer Science Research Vol. 5 No. 5 (2025): August 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i5.755

Abstract

The academic process requires speed and accuracy in processing student data, such as submitting final project titles. In the context of final project title recommendations, many universities have not yet implemented the Data Mining approach optimally. Based on this, this study aims to recommend grouping of student final project proposal titles. The K-Means clustering method can be used in grouping data based on similarities between analyzed objects. With the K-Means method, the student grouping process utilizes grade data from the courses of Rock Mechanics, Drilling and Excavation Techniques, Underground Mining Methods, Reserve Modeling and Evaluation, Explosives and Blasting Techniques, Open Pit Mining, Mine Drainage Systems, Mapping Surveys, and Mineral Resources. The results of K-Means are strongly influenced by the k parameter and centroid initialization. The research variables include data mapping of course grades of students in the Mining Engineering Study Program. Based on the K-Means Clustering Method, it has been able to divide 104 student value data into 3 clusters, namely Natural Resource Exploration (C0), Geomechanics (C1) and Mining Environment (C2). The results of Cluster CO are 60, the results of Cluster C1 are 27 and the results of Cluster C2 are 17. The contribution of this research can provide fast, precise and accurate information in grouping recommendations for student final project proposal titles.
Co-Authors Abdul Azis Said Adawiyah, Quratih Adek Putri Adi Gunawan Adi Gunawan, Adi Adyanata Lubis, Adyanata Afriyadi, Iqbal Agus Perdana Windarto Agustin, Riris Ahmad Zaki Ahmad Zamsuri, Ahmad Akbar, Muhamad Rafi Akbar, Syifa Chairunnissa Deliva Am, Andri Nofiar Amran Sitohang Anam, M Khairul Andema, Henky Andin, Silfia Andri Nofiar Angga Putra Juledi Anthony Anggrawan Arda Yunianta ardialis Ariandi, Vicky Arif Budiman Arif Budiman Arika Juwita Z Asri Hidayad Ayunda, Afifah Trista Bastola, Ramesh Bosker Sinaga Breinda, Engla Bufra, Fanny Septiani Daeng Saputra Perdana Dahria, Muhammad Daniel Theodorus Dayla May Cytry Dendi Ferdinal Deno Yulfa Ardian Deti Karmanita Devita, Retno Dhena Marichy Putri Dila, Rahmah Dinda Permata Sukma Dwi Utari Iswavigra Dwiki Aulia Fakhri Efendi, Akmar Efendi, Muhamad Efrizoni, Lusiana Eka Praja Wiyata Mandala Elda, Yusma eriwandi Fadlul Hamdi Faisal Roza Fajrul Islami Fanny Septiani Bufra Fatimah, Noor Fauzan Azim Fauzana, Rahmi Fauzi Erwis Febri Aldi Febri Hadi Febrina, Yerri Kurnia Firdaus, Muhammad Bambang Fitriani, Yetti Fristi Riandari Fuad El Khair Gaja, Rizqi Nusabbih Hidayatullah Gunadi Widi Nurcahyo Gunadi Widi Nurcahyo, Gunadi Guslendra, Guslendra Hadiyanto, Tegas Halifia Hendri Handika, Yola Tri Haris Kurniawan Hartati, Yuli Hasmaynelis Fitri Haviluddin Haviluddin Hazlita, H Hendrik, Billy Hendro Budiantoro Hengki Juliansa Henky Andema Hermanto Hidayad, Asri Hidayat, Rahmadani Honestya, Gabriela Huda, Ramzil Ikhbal Salam, Riyan Indah Savitri Hidayat Indhira, Sonia INTAN NUR FITRIYANI Ira Nia Sanita Irsyad, As'Ary Sahlul Irzal Arief Wisky Ismail Virgo Jefdy Kurniawan Jeri Wandana Juansen, Monsya Jufri, Fikri Ramadhan Juledi, Angga Putra Junadhi, Junadhi Kareem, Shahab Wahhab Khairul Azmi Kurniawan, Jefdy Kurniawan, Mhd Hary Leony Lidya Lidya, Leoni Lubis, Fitri Amelia Sari Lubis, Siti Sahara Lusiana Lusiana M Syahputra M. Ibnu Pati M. Syahputra Malik, Rio Andika Mardayatmi, Suci Mardison Mardison Mardison Marfalino, Hari Meilinda Sari Meilinda Sari Melissa Triandini Menhard, Menhard Mhd Hary Kurniawan Miftahul Hasanah Miftahul Hasanah, Miftahul Mike Zaimy Monsya Juansen MUHAMMAD TAJUDDIN Muhammad, L. J. Mulyanda, Sandy Nadya Alinda Rahmi Nandan Limakrisna Nanik Istianingsih Nori Sahrun, Nori Novi Yanti Nurcahyo, Gunadi Nurcahyo, Gunadi Widi Nurdin, Yogi K Nurhadi Nurhidayat Nursyahrina Okfalisa, - Okmarizal, Bisma Olivia, Ladyka Febby Pandu Pratama Putra, Pandu Pratama Parinduri, Rezti Deawinda Pati, Muhammad Ibnu Pebriyanti, Defi Pratiwi, Mutiana Pulungan, Akhiruddin Purnomo, Nopi Putra, Akmal Darman Putra, Rahman Arief Putra, Surya Dwi Putri, Adek Putri, Dhena Marichy Putri, Yozi Aulia Putut Wicaksono, Putut R Rahmiyanti Radillah, Teuku Rafika Sani Rafiska, Rian Rahmad Aditiya Rahmad Rahmad Rahman Arief Putra Rahmi, Nadya Alinda Ramadhan, Mukhlis Ramadhanu, Agung Ramdani Bayu Putra Rani, Larissa Navia Refina Afindania, Pipin Resnawita, R Rezki - Rezki Rusydi Rian Kurniawan Rianti, Eva Ritna Wahyuni Rizki Mubarak Roza Marmay Roza, Yesi Betriana Rusdianto Roestam Rustam, Camila S Sumijan Said, Abdul Azis Sandrawira Anggraini Sani, Rafikasani Saputra, Dhio Sari, Imrah Sari, Laynita Selfi Melisa Septiano, Renil Setiawan, Adil Sharon Shaza Alturky Siregar, Diffri Solihin Sitanggang, Sahat Sonang Slamet Riyadi Sofika Enggari Sovia, Rini Sri Dewi Sri Dewi Sri Rahmawati Suci Mardayatmi Suhefi Oktarian Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan, S Suri, Ghea Paulina Surmayanti Surya Dwi Putra Suryani, Vivi Susandri, Susandri Susriyanti, Susriyanti Syafri Arlis Syafrika Deni Rizki, Syafrika Deni Syaljumairi, Raemon Syofneri, Nandel Tamaza, Muhammad Abyanda Teri Ade Putra Tesa Vausia Sandiva Tukino, Tukino Veri, Jhon Veza, Okta Virgo, Ismail Vitriani, Vitriani Wahyu, Fungki Wanto, Anjar Wenni Afrodita Weri Sirait Y Yuhandri Yamin, Abdul Yamin Yemi, Leonardo Yerri Kurnia Febrina Yetti Fitriani Yogi K. Nurdin Yoni Aswan Yuda Irawan Yuhandri Yuhandri Yuhandri Yuhandri, Yuhandri Yulasmi Yulasmi, Yulasmi Yuli Hartati Yulihartati, Sandra Yunus, Yuhandri Yusma Elda Zakir, Supratman Zia Rahimi, Hadisha Zulvitri, Z Zuqron, M. Iqbal Zurni Mardian