p-Index From 2021 - 2026
17.647
P-Index
This Author published in this journals
All Journal TEKNIK INFORMATIKA JURNAL SISTEM INFORMASI BISNIS Voteteknika (Vocational Teknik Elektronika dan Informatika) Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Jurnas Nasional Teknologi dan Sistem Informasi Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Riau Journal of Computer Science JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research RABIT: Jurnal Teknologi dan Sistem Informasi Univrab INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Jurnal Penelitian Pendidikan IPA (JPPIPA) Indonesian Journal of Artificial Intelligence and Data Mining Rang Teknik Journal ILKOM Jurnal Ilmiah MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Journal of Information Technology and Computer Engineering Jambura Journal of Informatics ComTech: Computer, Mathematics and Engineering Applications Jusikom: Jurnal Sistem Informasi Ilmu Komputer bit-Tech Systematics Jurnal Sistem informasi dan informatika (SIMIKA) Jurnal Sistim Informasi dan Teknologi Jurnal Informasi dan Teknologi Jurnal Informatika Ekonomi Bisnis Journal of Robotics and Control (JRC) Journal of Applied Engineering and Technological Science (JAETS) JATI (Jurnal Mahasiswa Teknik Informatika) Jurnal Ilmiah Manajemen Kesatuan Dinasti International Journal of Digital Business Management JUKI : Jurnal Komputer dan Informatika Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Journal of Applied Data Sciences Jurnal Computer Science and Information Technology (CoSciTech) Journal of Applied Computer Science and Technology (JACOST) Journal of Computer Scine and Information Technology Bulletin of Computer Science Research Jurnal Penelitian Inovatif Jurnal Ipteks Terapan : research of applied science and education Jurnal Pustaka AI : Pusat Akses Kajian Teknologi Artificial Intelligence Jurnal Teknoif Teknik Informatika Institut Teknologi Padang Jurnal Komtekinfo Jurnal Sistim Informasi dan Teknologi Jurnal Administrasi Sosial dan Humaniora (JASIORA) Innovative: Journal Of Social Science Research e-Jurnal Apresiasi Ekonomi Jurnal Informatika Ekonomi Bisnis RJOCS (Riau Journal of Computer Science) SmartComp Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) JR : Jurnal Responsive Teknik Informatika Jurnal Responsive Teknik Informatika
Claim Missing Document
Check
Articles

ALGORITMA ASSOCIATION RULE METODE FP-GROWTH MENGANALISA TINGKAT KEJAHATAN PENCURIAN MOTOR (STUDI KASUS DI POLRESTA PADANG) Suri, Ghea Paulina; Defit, Sarjon; Sumijan
Jurnal Responsive Teknik Informatika Vol. 2 No. 01 (2018): JR : Jurnal Responsive Teknik Informatika
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36352/jr.v2i01.222

Abstract

Kendaraan bermotor merupakan sarana vital dengan mobilitas tinggi yang sangat diperlukan untuk kehidupan di era modern ini. Salah satu cara yang dapat dilakukan untuk penentuan strategi tersebut adalah dengan menggunakan teknik data mining. Adapun teknik yang digunakan Algoritma FP-Growth adalah salah satu alternatif algoritma yang dapat digunakan untuk menentukan himpunan data yang paling sering muncul (frequent itemset) dalam sekumpulan data. Tujuan dari penelitian ini adalah membangun suatu pengetahuan baru dalam menganalisa tingkat kasus pencurian motor dan memberikan informasi kepada kepolisian dalam mengatasi tingkat kejahatan. Sumber data masih belum lengkap karna data mentahnya masih belum diolah, data yang diambil merupakan data pencurian motor yang mencakup laporan dipolresta padang. Data yang di dapat memiliki atribut pekerjaan dan terlapor, data yang telah didapat belum bisa langsung diolah dan dikumpulkan dan diberi kode agar mudah dalam pemrosesan atau pengolahan data mining. Hasil dari pengujian terhadap metode ini maka didapatkan informasi untuk dapat membantu kepolisian dalam mengatasi tingkat kejahatan pada pencurian sepeda motor dan mengimplementasikan algoritma FP-Growth yang menggunakan konsep pembangunan FP-Tree dalam mencari Frequent Itemset. Maka dihasilkan Association Rule.
Sistem Pakar Metode Backward Chaining untuk Optimalisasi Pelayanan Pemberian Informasi Obat: Studi Kasus Puskesmas Lasi Kabupaten Agam Putra, Surya Dwi; Putri, Dhena Marichy; Defit, Sarjon; Sumijan, Sumijan
JITCE (Journal of Information Technology and Computer Engineering) Vol. 7 No. 01 (2023)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jitce.7.01.1-7.2023

Abstract

Drug information service is an assistance service to handle the needs of pharmacists related to medicines consumed by patients at the Lasi Health Center, Agam Regency. Nowadays, most of drug information services always require pharmacists to carry out their services, although there is limited number of pharmacists for providing drug information services at the Lasi Health Center, Agam Regency. This study aims to optimize drug information services so that the services can be carried out without the direct presence of a pharmacist. The data used in this study were drug prescription data available at the Pharmacy of Lasi Health Center Agam for the last 12 months and drug information services provided by pharmacists at the Lasi Health Center Agam Regency. This study used the backward chaining method to identify the drugs prescribed to the patients. The result achieved by this study were 356 Rules that could be applied directly to drug information services, with an accuracy rate of 100%. The rules generated using the backward chaining method can be used to optimize drug information services at the Lasi Health Center in Agam Regency without having to be served directly by pharmacists.
ALGORITMA ASSOCIATION RULE METODE FP-GROWTH MENGANALISA TINGKAT KEJAHATAN PENCURIAN MOTOR (STUDI KASUS DI POLRESTA PADANG) Suri, Ghea Paulina; Defit, Sarjon; Sumijan
Jurnal Responsive Teknik Informatika Vol. 2 No. 01 (2018): JR : Jurnal Responsive Teknik Informatika
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36352/jr.v2i01.222

Abstract

Kendaraan bermotor merupakan sarana vital dengan mobilitas tinggi yang sangat diperlukan untuk kehidupan di era modern ini. Salah satu cara yang dapat dilakukan untuk penentuan strategi tersebut adalah dengan menggunakan teknik data mining. Adapun teknik yang digunakan Algoritma FP-Growth adalah salah satu alternatif algoritma yang dapat digunakan untuk menentukan himpunan data yang paling sering muncul (frequent itemset) dalam sekumpulan data. Tujuan dari penelitian ini adalah membangun suatu pengetahuan baru dalam menganalisa tingkat kasus pencurian motor dan memberikan informasi kepada kepolisian dalam mengatasi tingkat kejahatan. Sumber data masih belum lengkap karna data mentahnya masih belum diolah, data yang diambil merupakan data pencurian motor yang mencakup laporan dipolresta padang. Data yang di dapat memiliki atribut pekerjaan dan terlapor, data yang telah didapat belum bisa langsung diolah dan dikumpulkan dan diberi kode agar mudah dalam pemrosesan atau pengolahan data mining. Hasil dari pengujian terhadap metode ini maka didapatkan informasi untuk dapat membantu kepolisian dalam mengatasi tingkat kejahatan pada pencurian sepeda motor dan mengimplementasikan algoritma FP-Growth yang menggunakan konsep pembangunan FP-Tree dalam mencari Frequent Itemset. Maka dihasilkan Association Rule.
IMPLEMENTASI DECISION TREE DALAM PENGAMBILAN KEPUTUSAN UNTUK PEMBERIAN BEASISWA Zia Rahimi, Hadisha; Defit, Sarjon; Veri, Jhon
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 3 (2025): JATI Vol. 9 No. 3
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i3.13580

Abstract

Pemberian beasiswa merupakan salah satu upaya untuk mendukung akses pendidikan bagi siswa yang berprestasi dan membutuhkan bantuan finansial. Namun, proses seleksi penerima beasiswa yang dilakukan secara manual sering sekali memakan waktu lama, kurang efisien, dan berpotensi menimbulkan ketidak tepatan dalam penentuan penerima yang layak. Penelitian ini bertujuan untuk mengembangkan Sistem Pendukung Keputusan menggunakan Decision Tree guna membantu proses seleksi penerima beasiswa secara lebih terstruktur, transparan, dan tepat sasaran. Metode Decision Tree Algoritma C4.5 digunakan dalam penelitian ini karena mampu mengolah data dalam jumlah besar serta menghasilkan pohon keputusan yang mudah dipahami dan kemudahannya dalam melakukan klasifikasi. Proses pengolahan data dilakukan melalui beberapa tahap, termasuk pengumpulan data, preprocessing, perhitungan entropy dan gain, serta pembentukan pohon keputusan. Data yang dikumpulkan diklasifikasikan berdasarkan kategori tertentu sebelum dianalisis menggunakan metode C4.5 untuk membangun pohon keputusan. Hasil penelitian menunjukkan bahwa metode Decision Tree dapat mengklasifikasikan siswa yang layak dan tidak layak menerima beasiswa dengan tingkat akurasi yang tinggi dibandingkan metode manual sebelumnya. Dengan adanya penelitian ini, diharapkan sekolah dapat lebih efisien dalam menyalurkan beasiswa kepada siswa yang benar-benar membutuhkan dan memastikan bahwa beasiswa diberikan kepada siswa yang benar-benar memenuhi kriteria.
Development of Euclidean Distance Algorithm for ANFIS Optimization in IoT-based Pond Water Quality Prediction Dahria, Muhammad; Defit, Sarjon; Yuhandri, Yuhandri
Journal of Robotics and Control (JRC) Vol. 6 No. 4 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i4.26497

Abstract

Pond water quality is a pivotal factor that influences the productivity and health of biota in aquaculture systems. The monitoring and prediction of water quality parameters, including temperature, pH, and dissolved oxygen (DO) levels, are imperative for maintaining optimal environmental conditions. The objective of this research is to develop the Euclidean Distance algorithm as an optimization method in adaptive neuro-fuzzy inference system (ANFIS) modeling to enhance the accuracy of internet of things (IoT)-based pond water quality prediction. Water quality parameter data is collected in real-time using IoT sensors connected to an ESP32 microcontroller and transmitted to a cloud storage platform for analysis. Subsequently, the data undergoes a series of processing steps, including min-max normalization and feature selection based on Euclidean distance. This process aims to generate a more representative and relevant subset of data for the subsequent model training process. The ANFIS model was trained using the optimized data and evaluated using MSE, MAD, MRSE and MAPE metrics. The training process involving four data sharing scenarios demonstrated a reduction in error when compared to the model that lacked optimization, specifically: The following proportions were determined: 50% versus 50% (0.11824 versus 0.15536), 70% versus 30% (0.18666 versus 0.19454), 80% versus 20% (0.17843 versus 0.18833), and 90% versus 10% (0.22477 versus 0.22859). The findings indicate that the incorporation of the Weighted Euclidean Distance algorithm within the IoT-based prediction system can markedly enhance the efficiency and precision of the ANFIS model.
ANALISIS BIG DATA BEASISWA KIP-K MENGGUNAKAN K-MEANS CLUSTERING Pebriyanti, Defi; Defit, Sarjon; Nurcahyo, Gunadi Widi
Jurnal Sistem Informasi dan Informatika (Simika) Vol. 8 No. 2 (2025): Jurnal Sistem Informasi dan Informatika (Simika)
Publisher : Program Studi Sistem Informasi, Universitas Banten Jaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47080/34aycf56

Abstract

The Kartu Indonesia Pintar Kuliah (KIP-K) Scholarship Program is a government initiative to provide higher education access to underprivileged students. It aims to reduce educational disparities and improve access for eligible students. However, the selection process faces challenges, particularly in identifying applicants who truly need financial aid. With the increasing number of applicants each year, a Big Data-based approach is essential to enhance selection efficiency and accuracy. This study analyzes KIP-K scholarship recipients’ profiles using the K-Means Clustering method. This technique groups data based on attribute similarities, allowing an objective and data-driven selection process. The dataset, obtained from Universitas Prima Nusantara Bukittinggi (2024), consists of 479 applicants. It includes attributes such as academic performance, parental income, number of dependents, KIP-K card ownership, and achievements. Results indicate that recipients can be categorized based on document completeness, academic scores above 85, and more than three family dependents. Implementing K-Means Clustering improves the selection process by making it more objective, transparent, and efficient.
Development Extraction of Regional Features of Pleural Cavity Objects in Pneumothorax Lung X-ray Images by Dilation and Erosion Morphology Marfalino, Hari; Defit, Sarjon; Nurcahyo, Gunadi Widi
JOIV : International Journal on Informatics Visualization Vol 9, No 4 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.4.3387

Abstract

Image processing is a solution in the development of chest X-ray technology, starting from the image segmentation process as a preprocessing stage to separate the image object from the original background. Spontaneous pneumothorax (SP) is a type of air collection in the pleural cavity that develops without trauma. The diagnosis of pneumothorax has a sensitivity of approximately 25 to 75% using an anteroposterior chest x-ray, which still provides a dubious picture of pneumothorax. However, the development of the Region Feature algorithm with a new algorithm, namely RM Multy, has improved the accuracy. The RM Multy algorithm can calculate the area of the object, allowing it to produce the area of infiltration in the right lung, left lung, and the lung as a whole. The Region Feature results of the Pneumothorax obtained with the detected image area as many as 19 areas, for the pixel size of each area are 145, 355, 110, 31, 31, 52, 30, 36, 54, 122, 58, 23, 476, 77, 192, 24, 168, 263, 41 and 44. So the total pixels for 19 areas is 2301. The area converted to mm2 is 2301 x 0.04 mm2 = 92.04 mm2. Classification results on lungs with Pneumothorax and Normal by detection process with RM Multy using the CNN algorithm with an accuracy of 96.43%. This accuracy confirms the success of the system, which has been processed using a new algorithm. Therefore, further development is needed to improve detection accuracy in pneumothorax cases with smaller area sizes.
Enhancing U-Net for Wrist Fracture Segmentation in X-ray Images using Adaptive Callbacks and Weighted Loss Functions Radillah, Teuku; Defit, Sarjon; Nurcahyo, Gunadi Widi
Journal of Applied Data Sciences Vol 6, No 4: December 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i4.952

Abstract

The detection of wrist fracture through medical imaging is causing considerable challenges due to the subtle and variable manifestation of such ruptures, necessitating precise and reliable segmentation methods. Therefore, this research aimed to propose an improved U-Net model for detecting wrist fracture. The model incorporated two innovations, namely adaptive callback training and weighted loss combination. The adaptive callback mechanism could be performed by dynamically adjusting the training parameters based on the model performance to prevent overfitting and accelerate convergence. At the same time, the loss function combined Dice Loss and Binary Cross-Entropy (BCE) Loss with linear as well as non-linear exponential weighting strategies, ensuring balanced optimization between region-based accuracy and pixel classification. During this analysis, a series of experiments were conducted on a curated wrist X-ray image dataset, and the results showed that the proposed method expressed superior performance in terms of segmentation accuracy when compared with previous U-Net and other state-of-the-art procedures. The proposed method achieved 91% accuracy, 87% precision, 86% recall, and 87% F1 score. Following this discussion, the findings showed the efficacy of the adaptive training design and loss function in improving the strength and sensitivity of the model in detecting wrist fracture
Addressing Class Imbalance in Machine Learning for Predicting On-Time Student Graduation at The Islamic University of Riau Efendi, Akmar; Defit, Sarjon
JURNAL TEKNIK INFORMATIKA Vol. 18 No. 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i2.45913

Abstract

Timely graduation is an important indicator of academic performance in higher education. However, many students still fail to graduate on time, prompting the need for predictive models to support academic decision-making. This study aims to analyze the impact of class imbalance on machine learning algorithm performance in predicting student graduation at the Islamic University of Riau. Data were obtained through questionnaires and labeled into “graduated on time” and “not on time” classes, which were initially imbalanced. The Synthetic Minority Over-Sampling Technique (SMOTE) was applied during preprocessing to balance the dataset. Four machine learning algorithms were compared: Decision Tree, Gaussian Naive Bayes, K-Nearest Neighbors, and Support Vector Machine. The evaluation was conducted with and without SMOTE, using accuracy, precision, recall, F1-score, and confusion matrix. Results showed significant performance improvements after applying SMOTE, with all models achieving around 99% accuracy. SVM achieved the most stable results across both conditions. The study highlights the effectiveness of SMOTE in improving classification fairness and reliability, especially in datasets with class imbalance. This work may assist universities in early intervention for students at risk of late graduation.
Penerapan Metode K-Means Clustering Dalam Pengelompokan Penyakit Pada Ayam Kampung Unggul Balibangtan Afriyadi, Iqbal; Defit, Sarjon; Sumijan, Sumijan
Smart Comp :Jurnalnya Orang Pintar Komputer Vol 14, No 4 (2025): Smart Comp: Jurnalnya Orang Pintar Komputer
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/smartcomp.v14i4.8508

Abstract

Penyakit ayam saat ini merupakan salah satu ancaman terbesar pada sebuah peternakan ayam. Penyakit pada ayam bisa disebabkan oleh virus dan bakteri.  Ayam KUB merupakan salah satu jenis unggas yang dikembangkan oleh Badan Penelitian dan Pengembangan Pertanian Indonesia, dengan daya tahan tubuh yang baik dan produktivitas tinggi. Kendati demikian ayam KUB ini tetap rentan terhadap berbagai jenis penyakit yang dapat memengaruhi produktivitasnya. Pengelompokan penyakit pada ayam KUB penting untuk dilakukan guna mengidentifikasi pola serangan penyakit serta memberikan langkah preventif yang tepat bagi para peternak. Penelitian ini bertujuan untuk mengelompokkan penyakit yang menyerang Ayam Kampung Unggul Balitbangtan (KUB). Metode yang digunakan pada penelitian ini adalah penerapan machine learning dengan metode K-Means Clustering. Metode ini memiliki beberapa tahapan yaitu penyiapan data, normalisasi data, inisialisasi centroid, mengelompokkan data berdasarkan jarak terdekat, memperbarui centroid, iterasi sampai konvergensi, dan evaluasi hasil. Dataset yang diolah pada penelitian ini bersumber dari pengamatan langsung pada peternakan ayam ASA Farm Padang. Dataset yang digunakan dalam penelitian ini berjumlah 50 dataset yang berasal dari 50 ekor ayam KUB yang masuk kandang karantina pada peternakan tersebut. Pada penelitian ini menghasilkan kelompok penyakit ayam pada 3 kluster yaitu kluster 1 untuk ayam dengan penyakit gejala ringan dengan jumlah sebanyak 12 anggota, kluster 2 dengan penyakit gejala sedang dengan jumlah 14 anggota, dan kluster 3 dengan penyakit gejala tinggi sebanyak 24 anggota. Sehingga penelitian ini diharapkan dapat menjadi acuan bagi peternak, dokter hewan, peneliti selanjutnya atau pihak terkait dalam mengelompokan penyakit pada ayam kampung atau hewan ternak lainya.
Co-Authors Abdul Azis Said Adawiyah, Quratih Adek Putri Adi Gunawan Adi Gunawan, Adi Adyanata Lubis Afriyadi, Iqbal Agus Perdana Windarto Agustin, Riris Ahmad Zaki Ahmad Zamsuri, Ahmad Akbar, Muhamad Rafi Akbar, Syifa Chairunnissa Deliva Am, Andri Nofiar Amran Sitohang Anam, M Khairul Andema, Henky Andin, Silfia Andri Nofiar Angga Putra Juledi Anthony Anggrawan Arda Yunianta ardialis Ariandi, Vicky Arif Budiman Arif Budiman Arika Juwita Z Asri Hidayad Ayunda, Afifah Trista Bastola, Ramesh Bosker Sinaga Breinda, Engla Bufra, Fanny Septiani Daeng Saputra Perdana Dahria, Muhammad Daniel Theodorus Dayla May Cytry Dendi Ferdinal Deno Yulfa Ardian Deti Karmanita Devita, Retno Dhena Marichy Putri Dila, Rahmah Dinda Permata Sukma Dwi Utari Iswavigra Dwiki Aulia Fakhri Efendi, Akmar Efendi, Muhamad Efrizoni, Lusiana Eka Praja Wiyata Mandala Elda, Yusma eriwandi Fadlul Hamdi Faisal Roza Fajrul Islami Fanny Septiani Bufra Fatimah, Noor Fauzan Azim Fauzana, Rahmi Fauzi Erwis Febri Aldi Febri Hadi Febrina, Yerri Kurnia Firdaus, Muhammad Bambang Fitriani, Yetti Fristi Riandari Fuad El Khair Gaja, Rizqi Nusabbih Hidayatullah Gunadi Widi Nurcahyo Gunadi Widi Nurcahyo, Gunadi Guslendra, Guslendra Hadiyanto, Tegas Halifia Hendri Handika, Yola Tri Haris Kurniawan Hartati, Yuli Hasmaynelis Fitri Haviluddin Haviluddin Hazlita, H Hendrik, Billy Hendro Budiantoro Hengki Juliansa Henky Andema Hermanto Hidayad, Asri Hidayat, Rahmadani Honestya, Gabriela Huda, Ramzil Ikhbal Salam, Riyan Indah Savitri Hidayat Indhira, Sonia INTAN NUR FITRIYANI Ira Nia Sanita Irsyad, As'Ary Sahlul Irzal Arief Wisky Ismail Virgo Jefdy Kurniawan Jeri Wandana Juansen, Monsya Jufri, Fikri Ramadhan Juledi, Angga Putra Junadhi, Junadhi Kareem, Shahab Wahhab Khairul Azmi Kurniawan, Jefdy Kurniawan, Mhd Hary Leony Lidya Lidya, Leoni Lubis, Fitri Amelia Sari Lubis, Siti Sahara Lusiana Lusiana M Syahputra M. Ibnu Pati M. Syahputra Mardayatmi, Suci Mardison Mardison Mardison Marfalino, Hari Meilinda Sari Meilinda Sari Melissa Triandini Menhard, Menhard Mhd Hary Kurniawan Miftahul Hasanah Miftahul Hasanah, Miftahul Mike Zaimy Monsya Juansen MUHAMMAD TAJUDDIN Muhammad, L. J. Mulyanda, Sandy Nadya Alinda Rahmi Nandan Limakrisna Nanik Istianingsih Nori Sahrun, Nori Novi Yanti Nurcahyo, Gunadi Nurcahyo, Gunadi Widi Nurdin, Yogi K Nurhadi Nurhidayat Nursyahrina Okfalisa, - Okmarizal, Bisma Olivia, Ladyka Febby Pandu Pratama Putra, Pandu Pratama Parinduri, Rezti Deawinda Pati, Muhammad Ibnu Pebriyanti, Defi Pratiwi, Mutiana Pulungan, Akhiruddin Purnomo, Nopi Putra, Akmal Darman Putra, Rahman Arief Putra, Surya Dwi Putri, Adek Putri, Dhena Marichy Putri, Yozi Aulia Putut Wicaksono, Putut R Rahmiyanti Radillah, Teuku Rafika Sani Rafiska, Rian Rahmad Aditiya Rahmad Rahmad Rahmadani Hidayat Rahman Arief Putra Rahmi, Nadya Alinda Ramadhan, Mukhlis Ramadhanu, Agung Ramdani Bayu Putra Rani, Larissa Navia Refina Afindania, Pipin Resnawita, R Rezki - Rezki Rusydi Rian Kurniawan Rianti, Eva Rio Andika Malik Ritna Wahyuni Rizki Mubarak Roza Marmay Roza, Yesi Betriana Rusdianto Roestam Rustam, Camila S Sumijan Said, Abdul Azis Sandrawira Anggraini Sani, Rafikasani Saputra, Dhio Sari, Imrah Sari, Laynita Selfi Melisa Septiano, Renil Setiawan, Adil Sharon Shaza Alturky Siregar, Diffri Solihin Sitanggang, Sahat Sonang Slamet Riyadi Sofika Enggari Sovia, Rini Sri Dewi Sri Dewi Sri Rahmawati Suci Mardayatmi Suhefi Oktarian Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan Sumijan, S Suri, Ghea Paulina Surmayanti Surya Dwi Putra Suryani, Vivi Susandri, Susandri Susriyanti, Susriyanti Syafri Arlis Syafrika Deni Rizki, Syafrika Deni Syaljumairi, Raemon Syofneri, Nandel Tamaza, Muhammad Abyanda Teri Ade Putra Tesa Vausia Sandiva Tukino, Tukino Veri, Jhon Veza, Okta Virgo, Ismail Vitriani, Vitriani Wahyu, Fungki Wanto, Anjar Wenni Afrodita Weri Sirait Y Yuhandri Yamin, Abdul Yamin Yemi, Leonardo Yerri Kurnia Febrina Yetti Fitriani Yogi K. Nurdin Yoni Aswan Yuda Irawan Yuhandri Yuhandri Yuhandri Yuhandri, Yuhandri Yulasmi Yulasmi, Yulasmi Yuli Hartati Yulihartati, Sandra Yunus, Yuhandri Yusma Elda Zakir, Supratman Zia Rahimi, Hadisha Zulvitri, Z Zuqron, M. Iqbal Zurni Mardian