p-Index From 2021 - 2026
8.337
P-Index
This Author published in this journals
All Journal International Journal of Evaluation and Research in Education (IJERE) Jurnal Pendidikan Matematika Undiksha Jurnal Pendidikan Matematika dan IPA Jurnal Pendidikan Sains Journal on Mathematics Education (JME) Journal on Mathematics Education (JME) AKSIOMA: Jurnal Program Studi Pendidikan Matematika JIPM (Jurnal Ilmiah Pendidikan Matematika) Journal of Research and Advances in Mathematics Education Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan AKSIOMA Briliant: Jurnal Riset dan Konseptual Sekolah Dasar: Kajian Teori dan Praktik Pendidikan Jurnal Kajian Pembelajaran Matematika Al Ishlah Jurnal Pendidikan JMPM: Jurnal Matematika dan Pendidikan Matematika PRISMA IndoMath: Indonesia Mathematics Education JTAM (Jurnal Teori dan Aplikasi Matematika) Jurnal Tadris Matematika Teorema: Teori dan Riset Matematika Jurnal Cendekia : Jurnal Pendidikan Matematika Journal of Humanities and Social Studies Math Educa Journal Vygotsky: Jurnal Pendidikan Matematika dan Matematika Jurnal Karinov International Journal of Insights for Mathematics Teaching (IJOIMT) Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang MATHEMA: JURNAL PENDIDIKAN MATEMATIKA Research in Social Sciences and Technology Indian Journal of Forensic Medicine & Toxicology International Journal of Humanities and Innovation (IJHI) Journal of Disruptive Learning Innovation (JODLI) Jurnal Keguruan dan Ilmu Pendidikan Jurnal Ilmiah Ilmu Terapan Universitas Jambi Journal Focus Action of Research Mathematic (Factor M) Jurnal MIPA dan Pembelajarannya Nuris Journal of Education and Islamic Studies International Journal of Trends in Mathematics Education Research (IJTMER) Indonesian Journal of Science, Technology, and Humanities PEDAMAS (Pengabdian Kepada Masyarakat) Jurnal Tadris Matematika Journal on Mathematics Education
Claim Missing Document
Check
Articles

Comparing model-building process: A model prospective teachers used in interpreting students’ mathematical thinking Sapti, Mujiyem; Purwanto; Irawan, Edy Bambang; As’ari, Abdur Rahman; Sa’dijah, Cholis; Susiswo; Wijaya, Ariyadi
Journal on Mathematics Education Vol. 10 No. 2 (2019): Journal on Mathematics Education
Publisher : Universitas Sriwijaya in collaboration with Indonesian Mathematical Society (IndoMS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Mathematical thinking is an important aspect of mathematics education and, therefore, also needs to be understood by prospective teachers. Prospective teachers should have the ability to analyze and interpret students’ mathematical thinking. Comparing model is one of the interpretation models from Wilson, Lee, and Hollebrands. This article will describe the prospective teacher used the model of the building process in interpretation students' mathematical thinking. Subjects selected by considering them in following the students’ strategies in solving the Building Construction Problem. Comparing model is a model of interpretation in which a person interprets student thinking based on student work. There are two types comparing model building process prospective teacher use in interpreting students’ mathematical thinking ie. comparing work and comparing knowledge. In comparing works, prospective teachers use an external representation rubric. This is used to analyze student activities in order to provide an interpretation that is comparing the work of students with their own work. In comparing knowledge, prospective teachers use internal representation rubrics to provide interpretation by comparing the students' work with their knowledge or thought.
The Growth of Students' Function Limit Concepts Understanding in Solving Controversial Problems Based on Pirie Kieren's Theory Susiswo, Susiswo; Parameswari, Pradina; Putri, Octavina Rizky Utami; Lanya, Harfin; Utami, Anita Dewi; Murniasih, Tatik Retno
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 7, No 4 (2023): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v7i4.16835

Abstract

Almost all students understand the limit of a function only up to an intuitive definition and have difficulty understanding the concept of a limit function formally. This study aims to describe the growth of student understanding of functions limit concept in solving controversial problems based on Pirie Kieren's theory. There were twelve Calculus class students in the short semester as participants.   The students selected were those who had taken calculus courses. Students are given the task of solving controversial problems to understand the concept of limit functions. There was only one student who showed a growing understanding of the concept of the limit of a function and was interviewed for further exploration. This research is a qualitative descriptive research. Therefore, the researchers analyzed the results of students' work through data reduction, data presentation, and conclusion drawing. The result shows that through controversial problems, students' understanding grows to an inventising level. However, students did ‘fold back’ at the observing level. At this level, students look at or re-read their notebooks to recall previously owned concepts.   For further research it is suggested that researchers can design a learning process that can help grow student understanding through controversial problems.
Lapisan Pemahaman Matematis Pirie-Kieren dan Pencapaiannya Melalui Scaffolding: Studi Kasus Pemecahan Masalah Sistem Persamaan Linear Dua Variabel (SPLDV) Siswa SMP Alaiya, Syekha Vivi; Susiswo, Susiswo; Darmawan, Puguh
Jurnal Tadris Matematika Vol 7 No 1 (2024)
Publisher : Universitas Islam Negeri Sayyid Ali Rahmatullah Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21274/jtm.2024.7.1.1-24

Abstract

This research aims to uncover layers of students' mathematical understanding and provide scaffolding to achieve all layers of Pirie-Kieren's mathematical understanding. This study is qualitative research with a multiple case study design. The research subjects are categorized into three types: (1) S1A and S1B are students who write structured problem-solving steps and their answers are correct, (2) S2A and S2B are students who write structured problem-solving steps but make mistakes in some steps resulting incorrect answers, and (3) S3A and S3B are students who write unstructured problem-solving steps but their answers are correct. Two subjects are chosen from each category to generate saturated data. The results of this research indicate that (1) S1A and S1B experience folding back to the inner layers, then systematically reach all layers of mathematical understanding after scaffolding, (2) S2A and S2B reach certain outer layers of mathematical understanding after scaffolding, (3) S3A and S3B reach certain inner layers of mathematical understanding after scaffolding. This research found that each subject reaches all layers of Pirie-Kieren's mathematical understanding after scaffolding through three methods: (1) providing prompting questions, (2) providing problem-solving examples, and (3) providing constructive feedback on subject answers. The teacher’s understanding of students' Pirie-Kieren mathematical understanding layers can be used to improve learning.
Analisis Aktivitas Diskusi Kelompok dalam Memberikan Umpan Balik (Feed Back) pada Pembelajaran Program Linier Budi, Bhakti Setya; Susiswo, Susiswo; Subanji, Subanji
BRILIANT: Jurnal Riset dan Konseptual Vol 6 No 4 (2021): Volume 6 Nomor 4, November 2021
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (39.003 KB) | DOI: 10.28926/briliant.v6i4.680

Abstract

Penelitian ini bertujuan untuk mendeskripsikan aktivitas diskusi yang dilakukan siswa dalam kelas. Aktivitas yang diteliti meliputi aktivitas verbal guru, aktivitas verbal siswa, serta aktivitas umpan balik yang dilakukan guru dan siswa. Jenis penelitian ini adalah penelitian deskriptif. dengan materi Program Linier. Metode pengambilan data dengan menggunakan video rekaman pembelajaran kemudian dibuat transkrip percakapan. Hasil penelitian menunjukkan bahwa dengan model pembelajaran diskusi kelompok yang diintegrasikan dengan umpan balik dapat memberi kesempatan siswa belajar dari ide/gagasan orang lain dan dapat segera mengatasi kesulitan yang dialami serta dapat memperkuat keyakinan atas tanggapan yang benar. Siswa belajar bagaimana berkomunikasi, menghargai orang lain dalam berpendapat, serta bagaimana membuat keputusan.
Pembelajaran Reciprocal Teaching dalam Peningkatan Komunikasi Matematis Siswa Adityawan, Tofan; Susiswo, Susiswo; Qohar, Abd
Nuris Journal of Education and Islamic Studies Vol. 4 No. 2: 2024
Publisher : STAI Nurul Islam Mojokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52620/jeis.v4i2.85

Abstract

Melaksanakan pembelajaran dengan strategi reciprocal teaching merupakan salah satu alternatif untuk meningkatkan kemampuan komunikasi matematis siswa. Penelitian ini merupakan penelitian tindakan kelas (PTK) dan dibagi menjadi dua siklus, yaitu Siklus I yang terdiri dari tiga sesi pertemuan di kelas, dan Siklus II yang terdiri dari dua sesi pertemuan di kelas. Hasil penelitian ini menunjukkan adanya peningkatan kemampuan komunikasi matematis pada materi program linier yang dibuktikan dengan peningkatan nilai rata-rata dan ketuntasan klasikal. Jumlah siswa Kelas X Farmasi adalah 24 orang. Pada saat pretest didapatkan nilai rata-rata kelas siswa adalah 70,9 kemudian pada siklus yang pertama nilai rata-rata kelasnya meningkat menjadi 81,9 dan kemudian pada siklus yang kedua nilai rata-rata kelas meningkat lagi menjadi 87. Dengan demikian jika dilihat dari presentase ketuntasan, maka pada saat pretest sebesar 50% artinya siswa yang tuntas sebanyak 12 siswa dan tidak tuntas tesnya sebanyak 12 siswa, sedangkan pada siklus I sebesar 66,67% artinya siswanya berjumlah 16 yang tidak tuntas dan 8 siswa tuntas. Kemudian yang terakhir pada siklus II presentasi ketuntasannya sebesar 87% yang berarti bahwa siswa yang tidak tuntas sebanyak 3 siswa dan siswa yang tuntas sebanyak 21 siswa.
Penalaran Matematis Siswa dalam Menyelesaikan Masalah Pola Bilangan dan Scaffoldingnya Suhartatik, Peni; Susiswo, Susiswo; As'ari, Aburrahman
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 7 No 1: Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 7 Nomor 1 Tahun 2023
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v7i1.1068

Abstract

Tujuan dari penelitian ini adalah untuk mendeskripsikan penalaran matematis siswa dalam menyelesaikan masalah pola bilangan dan scaffoldingnya. Jenis penelitian ini adalah deskriptif. Penelitian ini menggunakan pendekatan kualitatif. Data dalam penelitian ini merupakan gambaran dari fakta-fakta yang terjadi selama proses penelitian. Sumber data dalam penelitian ini berasal dari hasil tes yang terdapat pada lembar jawaban siswa dan hasil wawancara. Penelitian ini dilakukan di SMP Negeri 10 Malang. Subyek penelitian ini adalah 3 siswa kelas VIII. Instrumen yang digunakan dalam penelitian ini terdiri dari tes tertulis dan wawancara. Tes tertulis digunakan untuk menganalisis hasil penalaran matematis siswa dan tes wawancara digunakan untuk menggali penalaran matematis siswa. Hasil penelitian menunjukkan bahwa penalaran matematis ketiga siswa dalam menyelesaikan masalah pola bilangan meningkat lebih baik setelah diberikan scaffolding.
Strategi Metakognitif Siswa dalam Menyelesaikan Masalah Sistem persamaan Linear Dua Variabel Ditinjau Berdasarkan Kecemasan Matematika Januar, Linda Ramadhanty; Purwanto, Purwanto; Susiswo, Susiswo
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 7 No 1: Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 7 Nomor 1 Tahun 2023
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v7i1.1817

Abstract

Penelitian ini bertujuan untuk mendeskripsikan strategi metakognitif siswa dalam menyelesaikan masalah ditinjau dari kecemasan matematika. Jenis penelitian yang digunakan adalah penelitian deskriptif dengan pendekatan kualitatif. Pengumpulan data dilakukan dengan angket kecemasan matematika, tes dan wawancara. Subjek penelitian adalah peserta didik kelas IX SMPN 3 Sampang. Data yang didapatkan kemudian direduksi dan dianalisis secara kualitatif dengan memperhatikan indikator-indikator strategi metakognitif siswa. Hasil penelitian ini menunjukkan bahwa siswa dengan kecemasan matematika rendah mampu melakukan tahapn strategi metakognitif dengan sangat baik. Sedangkan untuk siswa dengan tingkat kecemasan tinggi, mereka tidak dapat melakukan strategi metakognitifnya dengan baik. Bagi peneliti selanjutnya, agar meneliti faktor-faktor yang mempengaruhi rendahnya strategi metakognitif siswa pada jenjang SMA/sederajat.
Komunikasi Matematis Siswa pada Materi Teorema Pythagoras Ditinjau dari Gaya Belajar Siswa Abdillah, Rizka; Susiswo, Susiswo; Susanto, Hery
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 7 No 1: Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 7 Nomor 1 Tahun 2023
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v7i1.1871

Abstract

Komunikasi matematis merupakan transfer ide atau gagasan matematika dari satu pihak ke pihak lain. Ketika siswa berbagi pemikiran matematis mereka, mereka merujuk pada cara atau gaya siswa dalam menerima, memproses, dan menyusun informasi yang diperoleh selama pembelajaran. Dengan demikian perbedaan gaya belajar siswa dapat mempengaruhi kemampuan komunikasi matematisnya. Tujuan penelitian ini adalah untuk mendeskripsikan komunikasi matematis tulis siswa dalam menyelesaikan soal Pythagoras ditinjau dari gaya belajar. Metode penelitian yang digunakan adalah metode deskriptif kualitatif. Peneliti merupakan instrumen utama pada penelitian ini. Pengumpulan data dilakukan dengan pemberian angket gaya belajar. tes komunikasi matematis, dan wawancara. Subjek penelitian sebanyak 3 siswa yang telah menempuh materi teorema Pythagoras. Hasil penelitian diperoleh 1) Siswa yang memiliki gaya belajar visual dapat memenuhi tiga indikator, 2) siswa yang memiliki gaya belajar auditorial dapat memenuhi dua indikator, dan 3) siswa yang memiliki gaya belajar kinestetik dapat memenuhi empat indikator. Penelitian ini memberikan informasi bahwa pentingnya untuk mengetahui gaya belajar masing-masing untuk dapat meningkatkan kemampuan komunikasi matematisnya.
The Role of Junior High School Students in Group Discussions to Solve Fermi Problems Mufidah, Wayan Indi Haidar; Susiswo, Susiswo; Irawati, Santi
PRISMA Vol 14, No 2 (2025): PRISMA
Publisher : Universitas Suryakancana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35194/jp.v14i2.5718

Abstract

This study investigates how junior high school students adopt and shift roles during group discussions while solving Fermi problems, using Positioning Theory as an analytical framework. The study employs a qualitative-descriptive approach with the subjects of eight students of class IX PD-CI MTsN 1 Kediri who were divided into two groups selected using purposive sampling techniques. Data were collected from audio and video recordings of group discussions, which were transcribed and coded for patterns of positioning, negotiation, and interaction, along with students’ written responses. The findings reveal that students take on different roles: novices often participate passively, facilitators organize the discussion and encourage participation, while experts contribute key information and guide reasoning. Some groups demonstrated dynamic role shifts throughout the activity, reflecting increased engagement and conceptual understanding, whereas others maintained more static participation patterns, limiting opportunities for collaborative idea exploration. This study uniquely analyzes role shifts among junior high school students through Positioning Theory in the context of Fermi problems. These findings highlight the importance of monitoring and structuring collaborative activities to promote equitable participation. For mathematics educators, understanding positioning patterns can inform instructional strategies, such as role rotation, supporting novice participation, and designing Fermi problems that foster active collaboration
Students’ Mathematical Thinking Solving Math Story Problems Pratiwi, Meira Indria; Susiswo, Susiswo; Irawati, Santi
PRISMA Vol 14, No 2 (2025): PRISMA
Publisher : Universitas Suryakancana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35194/jp.v14i2.5644

Abstract

Mathematics story problems are important to learn because they relate to contextual life. In the preliminary study, many MTs Qita Malang students made mistakes. One way to find out students' mistakes is to explore how they think mathematically. Therefore, the researcher conducted a study that aimed to describe how students think mathematically in solving mathematical story problems. The instruments used were test sheets and interview guidelines. This research is a qualitative-descriptive research that was attended by 15 grade IX students of MTs Qita Malang. Three research subjects were selected based on their ability level (high, medium, low). The results showed that students were highly capable through all aspects in the entry and attack phases, but missed the check and extend aspects in the review phase. Moderately capable students go through all aspects in the entry phase and skip the why aspect in the attack phase and only succeed through the reflect aspect in the review phase. Low ability students go through the entry phase of the know and want aspect, but skip the maybe and why aspect in the attack phase, and only through the reflect aspect in the review phase.
Co-Authors Abdillah, Rizka Abdur Rahman As’ari Adika Setyo Budi Lestari Adityawan, Tofan Agung, Citra Amelia Agus Alamsyah Akbar Sutawidjaja Alaiya, Syekha Vivi Alfiani Athma Putri Rosyadi Alkans Sofyawati Sutrisno Andika Setyo Budi Lestari Anies Fuady Anita Dewi Utami Arilaksmi, Ni Putu Gita Ariyadi Wijaya Arlina Trie Cahyono As'ari, Aburrahman Azizah Azizah Azizah Azizah Barep Yohanes Bhakti Setya Budi Budi, Bhakti Setya Cholis Sa’dijah Dahliatul Hasanah Damayanti, Hanifah Devinta Reza Prasanti Dewi Astutik Dewi Astutik Dian Nastiti Utami Dian Putri Wulandari Diyo Kriswanto Dwi Rahmawati Utami Dyah Tri Wahyuningtyas Edy Bambang Irawan Edy Sutarto Eka Damayanti Eka Damayanti Eko Prasetyo Erika Arum Puspita Erry Hidayanto Ery Febrianto Falahi Nurmaulina Fatma Noordinar Rahma Firdha Mahrifatul Zana Firdha Mahrifatul Zana Firnanda Pradana Putra Firnanda, Ganis Irma Flavia Aurelia Hidajat, Flavia Aurelia Gatot Muhsetyo Hamidah, Dewi Harfin Lanya, Harfin Henny Rismawatie Yusmarina Hery Susanto Hery Susanto Hijriani, Lailin I Made Sulandra I Nengah Parta Iis Afidah Ikram, Muhammad Imam Rofiki Indrawatiningsih, Nonik Intan Ayu Maharani Intan Faraminda Putri Intan Syafitri Lathiful Anwar Latifah Mustofa Lestyanto Lita Wulandari Aeli Lorenza, Nella Luluk Wahyu Nengsih Lydia Lia Prayitno Lydia Lia Prayitno, Lydia Lia Makbul Muksar Mamluatus Sa’adah Maulana, Hanief Maulidiyah Tutut Nurjanah Mila Sekar Ayu Mufidah, Wayan Indi Haidar Muhammad Ainur Rizqi Mujiyem Sapti Mujiyem Sapti Muliana Sari Nadia Nurudini Naela Nur Azizah Najwa, Wulida Arina Ni Putu Gita Arilaksmi Ninik Mutianingsih, Ninik Nursani Indah Pratiwi Nury Yuniasih, Nury Octavina Rizky Putri Utami Oktoviana, Lucky Tri Osman, Sharifah Pahrani, Andi Daniah Parameswari, Pradina Permadi, Hendra Permadi, Hendro Pradina Parameswari Prasanti, Devinta Reza Pratiwi, Enditiyas Pratiwi, Meira Indria Puguh Darmawan Purnomo, Purnomo Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Puspitasari, Yesy Putri, Octavina Rizky Utami Putri, Reni Albertin Qohar, Abd. Ramadhanty januar, Linda Ratna Titi Wulandari Ria Kurniawati Ria Norfika Yuliandari Rini Nurhakiki Risaldi Risaldi Risma Firda Diana Royyan Faradiba Rustanto Rahardi Samuntya, Fitri Sari, Ulum Rohma Sigmamitha Aghni Izzananda Sisworo Sitti Fithriani Saleh Subanji Subanji Sudirman Sudirman Suhartatik, Peni Surianastutiningtyas, Angela Maricilia Susilo, Claudya Zahrani Suwanti, Vivi Suwarman, Ramdhan F Swasono Rahardjo Syafitri, Intan Syaiful Hamzah Nasution Syamsul Hadi Tatik Retno Murniasih Tjang Daniel Chandra Toto Nusantara Trianingsih Eni Lestari Ulfa Ni'matil Hasanah umi faizah Wangguway, Yustinus Wasilatul Murtafiah Widi Candika Pakaya Wulida Arina Najwa Yesy Puspitasari Yrbayanti Putri Zaekhah Yundari, Yundari Zana, Firdha Mahrifatul Zuliati, Sulis Dwi Zulnaidi, Hutkemri