AbstrakSeksisme online menjadi topik penting di media sosial yang mempengaruhi perkembangan internet, menimbulkan efek negatif dan menjadi ancaman serius bagi wanita yang menjadi target. Penelitian ini menggunakan machine learning untuk mendeteksi seksisme pada kalimat bahasa Inggris. Algoritma yang digunakan adalah Support Vector Machine dan Naive Bayes. Grid search diterapkan pada model untuk mencari kombinasi hyperparameter terbaik sehingga menghasilkan skor terbaik. Pelatihan dibagi menjadi dua tugas, yaitu (1) pelatihan model menggunakan data tanpa penanganan imbalanced dan (2) pelatihan model menggunakan data yang telah dilakukan SMOTE. Hasil dari pelatihan model menunjukkan model SVM+SMOTE menghasilkan rata-rata skor F1 terbaik paling tinggi yaitu sebesar 0,96. Pengujian menggunakan data uji menunjukkan model SVM+SMOTE menghasilkan skor F1 tertinggi, yaitu sebesar 0,90 dengan 1467 kalimat diklasifikasikan benar 'not sexist’, 47 kalimat ‘not sexist’ diklasifikasikan sebagai ‘sexist’, 189 kalimat ‘sexist’ diklasifikasikan benar dan 297 kalimat ‘sexist’ diklasifikasikan sebagai ‘not sexist’.Kata kunci: Seksisme, Deteksi, SVM, Naive Bayes, SMOTEAbstractOnline sexism has become a significant issue on social media, impacting internet progress and posing a serious threat to targeted women. This research uses machine learning to detect sexism in English sentences. The algorithms used are Support Vector Machine and Naive Bayes. Grid search is applied in the model to find the best combination of hyperparameters to produce the best score. The training is divided into two tasks: (1) training the model using unhandle the imbalanced data and (2) training the model using data with SMOTE. The training results show that the SVM+SMOTE model produces the highest average best F1 score is 0.96. The testing results show that the SVM+SMOTE model produces the highest F1 score is 0.90 with 1467 sentences correctly classified as 'not sexist', 47 'not sexist' sentences classified as 'sexist', 189 sentences classified as 'sexist' correctly and 297 'sexist' sentences were classified as 'not sexist'.Keywords: Sexism, Detection, SVM, Naive Bayes, SMOTE