p-Index From 2020 - 2025
8.656
P-Index
This Author published in this journals
All Journal Cakrawala Pendidikan Jurnal Pendidikan Matematika Journal of Education and Learning (EduLearn) Journal on Mathematics Education (JME) Journal on Mathematics Education (JME) Tadris: Jurnal keguruan dan Ilmu Tarbiyah Jurnal Master Pariwisata (JUMPA) AKSIOMA: Jurnal Program Studi Pendidikan Matematika Indonesian Journal of Disability Studies Jurnal Pendidikan Matematika Jurnal Pembelajaran Berpikir Matematika Jurnal Elemen EDUKASI Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Jurnal Penelitian dan Pengembangan Pendidikan Luar Biasa Jurnal ORTOPEDAGOGIA Math Didactic: Jurnal Pendidikan Matematika JRPM (Jurnal Review Pembelajaran Matematika) JMPM: Jurnal Matematika dan Pendidikan Matematika Jurnal Pengabdian Masyarakat MIPA dan Pendidikan MIPA JTAM (Jurnal Teori dan Aplikasi Matematika) COUNS-EDU: The International Journal of Counseling and Education Beta: Jurnal Tadris Matematika Indiktika : Jurnal Inovasi Pendidikan Matematika Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah di Bidang Pendidikan Matematika MAJAMATH: Jurnal Matematika dan Pendidikan Matematika EDUKATIF : JURNAL ILMU PENDIDIKAN Math Educa Journal Vygotsky: Jurnal Pendidikan Matematika dan Matematika JPMI (Jurnal Pembelajaran Matematika Inovatif) Jurnal Riset Pendidikan dan Inovasi Pembelajaran Matematika (JRPIPM) Jurnal Ilmiah Profesi Pendidikan Variabel MATHunesa: Jurnal Ilmiah Matematika JANITA Pancaran Pendidikan MATHEdunesa Journal of Medives: Journal of Mathematics Education IKIP Veteran Semarang International Journal of Trends in Mathematics Education Research (IJTMER) Enrichment: Journal of Multidisciplinary Research and Development FINANCE : International Journal Of Management Finance JRAMathEdu (Journal of Research and Advances in Mathematics Education) Mathematics Education Journal Journal on Mathematics Education
Claim Missing Document
Check
Articles

PROFIL PENALARAN SISWA DALAM MEMECAHKAN MASALAH MATEMATIKA DITINJAU DARI GENDER Dooren Quintasari; I Ketut Budayasa; Raden Sulaiman
MATHEdunesa Vol 10 No 3 (2021): Jurnal Mathedunesa Volume 10 Nomor 3 Tahun 2021
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (284.75 KB) | DOI: 10.26740/mathedunesa.v10n3.p490-496

Abstract

Abstrak Profil penalaran merupakan gambaran atau deskripsi tentang berpikir logis untuk membuat pernyataan atau menarik kesimpulan berdasarkan pernyataan-pernyataan atau fakta yang relevan serta sudah dibuktikan kebenarannya. Indikator yang digunakan untuk mengungkapkan profil penalaran meliputi sensemaking, conjecturing, convincing, reflecting, dan generalising. Sementara itu, perbedaan gender memengaruhi profil penalaran dalam menyelesaikan masalah matematika. Penelitian ini bertujuan untuk mendeskripsikan profil penalaran siswa SMP dengan gender laki-laki maskulin dan perempuan feminin dalam memecahkan masalah matematika. Penelitian deskriptif dengan pendekatan kualitatif ini dilaksanakan di kelas VIII SMP Labschool Unesa tahun ajaran 2020/2021. Subjek penelitian adalah dua siswa kelas VIII yang memiliki kemampuan matematika yang setara. Mereka adalah seorang siswa laki-laki maskulin dan seorang siswa perempuan feminine. Pengumpulan data dilakukan dengan cara wawancara subjek secara mendalam berdasarkan Tugas Pemecahan Masalah. Tugas Pemecahan Masalah berisi soal uraian materi aljabar. Dalam pengumpulan data menggunakan teknik triangulasi waktu untuk memeroleh data yang kredibel. Analisis data dilakukan dengan kategorisasi data, reduksi data, penyajian data, interpretasi data, dan penarikan kesimpulan. Hasil penelitian menunjukkan bahwa laki-laki maskulin menggunakan berpikir logis dalam menyelesaikan masalah karena mampu memberikan argumen yang tepat disetiap langkah penyelesaian serta membuat dugaan strategi penyelesain yang tepat sehingga dapat menyelesaikan masalah dengan benar. Sedangkan perempuan feminin mengalami kesulitan dalam memberikan dugaan tentang strategi penyelesaian yang akan digunakan dan tidak mampu memberikan argumen pada beberapa langkah penyelesaian. Hal ini menunjukkan bahwa profil penalaran siswa laki-laki maskulin dalam menyelesaikan masalah matematika lebih baik dibandingkan perempuan feminine. Perbedaan profil penalaran mengakibatkan kemampuan siswa dalam aktivitas matematika mulai dari penyerapan konsep matematika sampai menyelesaikan masalah matematika juga berbeda sehingga akan berdampak pada hasil belajar siswa. Oleh karena itu, mengetahui profil penalaran siswa merupakan hal yang penting, dengan mengetahui profil penalaran siswa dapat membantu guru dalam menyusun pembelajaran yang mampu memaksimalkan domain pengetahuan siswa. Kata Kunci: profil penalaran, memecahkan masalah matematika, gender. Abstract Reasoning Profile is a description of logical thinking to make statements or draw conclusions based on statements or facts that are relevant and have been proven to be true. The indicators of reasoning profile are sensemaking, conjecturing, convincing, reflecting, and generalizing. Meanwhile, gender identity affects reasoning profiles in mathematical problems solving. This study aimed describing at the reasoning profile of junior high school students with gender male masculine and female feminine in solving mathematical problems. This descriptive research with a qualitative approach was implemented in Grade 8 of SMP Labschool UNESA academic year 2020/2021. The subjects were two eighth grade students who had the same math ability. They were one male masculine student and one female feminine student. Data were taken by interviewing the subject in depth on the basis of tasks problem solving. The problem solving task contained questions related to Algebraic matter. In collecting data using time triangulation techniques to obtain credible data. Data analysis was done by categorization, reduction, display, interpretation, and conclusion. The research results showed that male masculine student use logical thinking in problem solving by providing the right arguments at every step of the solutions and guessing correct solution strategy so that it can solve the problem correctly. Meanwhile, female feminine have the difficulty to make assumptions about solution strategy and unable to provide arguments at some steps of solution. This shows that the male masculine students' reasoning profile in solving mathematical problem is better than female feminine students. Differences in reasoning profiles result in students' abilities in mathematical activities ranging from absorption of mathematical concepts to solving mathematical problems that are also different so that it will have an impact on student learning outcomes. Therefore, knowing the student's reasoning profile is important, knowing the student's reasoning profile can help teachers in structuring learning that is able to maximize students' domain knowledge. Keywords: reasoning profile, solving mathematical problem, gender.
Comparison of Metacognition Awareness of Mathematics and Mathematics Education Students Based on the Ability of Mathematics La Misu; I Ketut Budayasa; Agung Lukito; Rosdiana Rosdiana
International Journal of Trends in Mathematics Education Research Vol 2, No 3 (2019)
Publisher : SAINTIS Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (621.976 KB) | DOI: 10.33122/ijtmer.v2i3.118

Abstract

Awareness of metacognition is one of mental process that occurs when a person knows what he thinks, including the knowledge and awareness to do something or realize the reason that. The purpose of this study is (1) to describe how the metacognition awareness of mathematics student and mathematics education student based on mathematical ability, and (2) to know the difference metacognitive awareness between of mathematics students with math education students based on mathematical ability. This research subject are the Department of Mathematics and Mathematics Education students of Halu Oleo University Kendari, Indonesia. This research is ex post facto by the data analysis using descriptive and inferential approach. Descriptive approach used to describe the level of metacognitive awareness of mathematics students and mathematics education students based on his mathematical abilities, whereas inferential approach used to see the difference in metacognition awareness of mathematics students and mathematics education students based math skills. The results of this study are: (1) the level of students metacognition awareness of Mathematics Department, generally located on level strategic use and level reflective use, while the level of students metacognition awareness of Education Mathematics Department, generally located on level aware use; (2) there is a significant difference between the awareness metacognition of math students with mathematics education student based on his mathematical abilities, and awareness metacognition of math student better than mathematics education students.
LITERASI KUANTITATIF SISWA DALAM MEMECAHKAN MASALAH MATEMATIKA DITINJAU DARI GAYA BELAJAR Sely Purwanti Ningsih; I Ketut Budayasa; Siti Khabibah
JPMI (Jurnal Pembelajaran Matematika Inovatif) Vol 6, No 3 (2023): Mei
Publisher : IKIP Siliwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/jpmi.v6i3.16968

Abstract

This research method is descriptive qualitative which aims to describe the quantitative literacy of junior high school students in solving mathematical problems in terms of visual, auditory, and kinesthetic learning styles. Research subjects were selected by giving a learning style questionnaire and grade VIII math scores in odd semesters. The test given was a problem-solving test in the form of a description of 3 questions and interviews containing questions to explore student answers in solving problems, and drawing conclusions. The results showed that (1) students with a visual learning style do: representation by making and explaining frequency distribution tables; student analysis shows that they believe that the information provided is useful for solving problems; assumptions and communications to explain the processes used in solving problems. (2) students with auditory learning style do: interpretation by understanding diagrams to understand problems and plan problem solving; calculation in planning, implementing, and reassessing by explaining how to calculate; analysis that is confident about the results of the solution being worked on. (3) students with a kinesthetic learning style interpret by reading graphs and questions on questions to understand and plan problem solving.
Pelabelan Harmonis Ganjil Kuat Beberapa Kelas Graf Juwita Marlinda Sari; I Ketut Budayasa
MATHunesa: Jurnal Ilmiah Matematika Vol. 11 No. 3 (2023)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v11n3.p328-338

Abstract

Bilangan Kromatik Modular Beberapa Kelas Graf Planar Sukma Kusuma Ambarwati; I Ketut Budayasa
MATHunesa: Jurnal Ilmiah Matematika Vol. 11 No. 3 (2023)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v11n3.p349-359

Abstract

Misalkan graf tanpa titik terasing. Titik pada graf , merupakan persekitaran titik . Jumlah warna pada di didefinisikan sebagai jumlah warna di , yaitu (mod ). Pewarnaan modular pada adalah sebuah fungsi , dengan dimana dalam untuk semua pasang titik dan yang berhubungan langsung pada . Bilangan kromatik modular adalah minimum dimana ada pewarnaan- modular pada yang dilambangkan dengan . Pada artikel ini dijelaskan tentang batas atas dan batas bawah dari bilangan kromatik modular suatu graf dan bilangan kromatik modular pada beberapa kelas graf planar yaitu graf Sikel , graf Pohon , graf Roda dan join dua graf . Kata Kunci: Pewarnaan modular, Bilangan kromatik modular, Graf Pohon, Graf Sikel, Graf Roda.
PELABELAN ANGGUN GRAF BERLIAN RANGKAP BERBINTANG, BEBERAPA KELAS GRAF POHON, DAN GRAF CORONA KHUSUS Lilla Afifah; I Ketut Budayasa
MATHunesa: Jurnal Ilmiah Matematika Vol. 11 No. 3 (2023)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v11n3.p368-382

Abstract

Pelabelan dari suatu graf adalah suatu pemetaan yang membawa setiap elemen graf yaitu himpunan sisi (edge) atau himpunan titik (vertex) ke bilangan bilangan bulat positif, yang disebut label. Sebuah fungsi disebut pelabelan anggun graf dengan m sisi jika adalah injektif dan fungsi terinduksi didefinisikan sebagai adalah bijektif. Graf yang mempunyai pelabelan anggun disebut graf anggun. Pada penelitian ini akan ditunjukkan konstruksi pelabelan anggun pada graf berlian rangkap berbintang , beberapa kelas graf pohon dan graf corona khusus (K_(n,n) ? K_1). Kata kunci: Pelabelan anggun, graf berlian rangkap berbintang, kelas graf pohon, graf K_(n,n) ? K_1. Labeling of a graph is a mapping that brings every graph element, namely the edge or vertex, to the positive integers, which is called label. A function f is called graceful labeling of graph G with m edge if is injective and induced function defined as is bijective. A graph that has graceful labeling is called a graceful graph. The construction of graceful labeling in the double-star diamond graph , some classes of tree graphs, and certain corona graph (K_(n,n) ? K_1) will be shown in this paper. Keywords: Graceful labeling, double-star diamond graph, class of tree graph, K_(n,n) ? K_1 graph.
BILANGAN KETERHUBUNGAN TITIK PELANGI BEBERAPA KELAS GRAF Addinda Nur Ameliyah; I Ketut Budayasa
MATHunesa: Jurnal Ilmiah Matematika Vol. 11 No. 3 (2023)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v11n3.p339-348

Abstract

A graph G is called a rainbow vertex connected if every two vertices G are connected by a rainbow path, that is, a path whose all the internal vertices are of a different color. The rainbow vertex connection number of graph G denoted by rvc(G) is the minimum number of colors used to color all vertices by G such that the graph G is connected to rainbow vertex. The rainbow vertex connection number in a graph will not be less than the diameter of the graph minus one. The rainbow vertex connection number discussed in this article for various classes of graphs include complete graph Kn, complete bipartite graph Km,n , wheel graph Wn , two-layer wheel graph Wn2, complete multipartite graph Kn1,n2,...,nt , path Pn, comb graph GSn, graph , graph , graph , graph . Keywords: graph, vertex coloring, rainbow vertex connection number.
Internvention Effort for Individuals with Autism During the COVID-19 Pandemic Dewi, Karina Wahyu; Purbaningrum, Endang; Budayasa, I Ketut; Andajani, Sri Joeda
Indonesian Journal of Disability Studies Vol. 9 No. 1 (2022)
Publisher : The Center for Disability Studies and Services Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (186.18 KB) | DOI: 10.21776/ub.ijds.2022.009.01.07

Abstract

Children with autism spectrum disorders need interventions to deal with communication, social interaction, and behavior problems. The Covid-19 pandemic has prevented children with autism spectrum disorders from performing face-to-face interventions outside the home. This study aims to describe the impact of the Covid-19 pandemic on individuals with autism spectrum disorders and to describe the intervention efforts of individuals with spectrum disorders during the Covid-19 outbreak. This study uses a systematic literature review consisting of three main phases, planning the review, conducting the review, and reporting the review, by analyzing 17 articles. The results show that the impact of the Covid-19 pandemic on children with autism is increased stress and anxiety. The cause of this anxiety stress is extreme routine changes that are difficult for children with autism spectrum disorders to experience. Some of the symptoms of behavioral changes as a result of this stress include anxiety, sleep disturbances, irritability, obsessions, impulsivity. Adolescents with autism spectrum disorders are also prone to depression. Therefore, intervention efforts that can be done are through telehealth (online health consultations and interventions), online learning, and family-based interventions with a variety of activities.
PEMAHAMAN SISWA KELAS VII SMP DALAM MEMECAHKAN MASALAH SEGIEMPAT BERDASARKAN GAYA KOGNITIF FIELD INDEPENDENT DAN FIELD DEPENDENDENT Kurniawati, Annisa Dwi; Budayasa, I Ketut; Masriyah, Masriyah
Math Educa Journal Vol 8, No 1 (2024)
Publisher : UIN Imam Bonjol Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15548/mej.v8i1.8201

Abstract

Student understanding is one of the interesting topics that is often the subject of research in the scope of mathematics education. On the other hand, cognitive style has a contribution related to student understanding. This study aims to determine how the understanding of junior high school students in solving quadrilateral problems based on cognitive style field independent and field dependent. Qualitative descriptive research involving 2 students consisting of 1 student cognitive style field independent and 1 student cognitive style field dependent. Research data obtained using several instruments namely GEFT, TKM, TPM, and interview guidelines. Furthermore, data checking was carried out using time triangulation. The results showed that the understanding of students in different cognitive styles also showed different understanding when solving problems. At each stage of problem solving, including the stages of understanding the problem, developing a plan, implementing the plan, and checking back, it is described about how the understanding and the extent of the connection of information with the scheme owned by each subject. In full, the understanding of students in solving geometry problems is described comprehensively in the research results section. Students with cognitive style field independent have information linkage with schema that has much more when compared with students with cognitive style field dependent. Based on the results of the study, teachers as educators can pay more attention to students with different cognitive styles when solving math problems. Therefore, instilling understanding and training students in solving mathematical problems is something that teachers should strive for in order to achieve quality learning objectives.
Embodied Cognition Profile of Junior High School Students in Solving Math Problems Based On Different Learning Styles Ma'allaili, Serlly Hindun; Budayasa, I Ketut; Susanah, Susanah
Jurnal Pendidikan Matematika IKIP Veteran Semarang Vol 8 No 3 (2024): Journal of Medives : Journal of Mathematics Education IKIP Veteran Semarang
Publisher : Urogram Studi Pendidikan Matematika, Universitas IVET

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31331/medivesveteran.v8i3.3252

Abstract

The purpose of this study is to describe the embodied cognition profile of junior high school students in solving math problems based on different learning styles (including visual, audio, and kinesthetic learning styles). Embodied cognition is a cognitive process resulting from a person's sensorimotor activities, involving interaction with the surrounding environment to obtain and represent their knowledge, in gesture and utterance. The instruments used include a learning style questionnaire, math problem-solving tasks, interview guidelines, and observation sheets. The results of this study are: (1) students with visual learning styles bring up gestures, namely pointing, representational, and writing gestures, and bring up utterances such as clear speech and tone of voice, calm facial expressions, focused gaze and eye movements, body calmness; (2) students with audio learning styles bring up two gestures, namely pointing gestures and writing gestures, and bring up utterances such as clear speech and tone of voice sometimes soft, calm facial expressions sometimes hesitant, focused gaze and eye movements, hands moving when explaining something; (3) students with kinesthetic learning styles bring up gestures, namely pointing, writing, and representational gestures, and bring up utterances such as clear speech and tone of voice, calm facial expressions, focused gaze and eye movements, hands moving when explaining something. Keywords: embodied cognition, problem-solving, learning style
Co-Authors ABADI Addinda Nur Ameliyah AFFIATI OKTAVIARINA Agis Sagita Widyaningrum Agung Lukito AGUNG LUKITO Agung Lukito Agung Lukito Agung Lukito Agung Lukito Nusantara Ahmad Isroil Ahmad Isroil, Ahmad Altika Dwi Mawarni Syah Andi Mariani Ramlan ANGGAWATI IMANNIYAH ANGGRAINI SULISTYA, DITA Anggraini, Evi ANGGUN WARDHANI, DEVY Aning Wida Yanti Annisa Ajeng Kusumastuti ANNISA DWI KURNIAWATI Ardila Septiana Putri Arwanto Arwanto Astri Widyawati Sulistyo Cahyani Ayu Nur Hidayah A’yunin Sofro Budi Priyo Prawoto Budiyanto Budiyanto Dede de Haan DEVY ANGGUN WARDHANI Dewi, Karina Wahyu Dia Lestari Didik Sugeng Pambudi Dinda Anisa' Nur Fadlilah DITA ANGGRAINI SULISTYA Dooren Quintasari Dwi Ivayana Sari Dwi Ivayana Sari, Dwi Ivayana Dwi Juniati Dwi Juniati Dwi Juniati Dwi Juniati Dwi Juniati Dwi Pramesti, Retna ENDANG PURBANINGRUM Endang Purbaningrum EVI ANGGRAINI E’en Rochaini Fatimatus Zahro Fiantika, Feny Rita Fitriyanti, Fitriyanti Hengky, SH Hery Suharna Hidayah Ansori Hutrisah SM Sitohang I Wayan Puja Astawa Ida Dwijayanti Ismail IZDIHAR KAMILA RAHMATIKA SURYA CANDRA Jafar Jafar Juwita Marlinda Sari KAMILA RAHMATIKA SURYA CANDRA, IZDIHAR Karina Wahyu Dewi Kiki Henra Lathiful Anwar Latifah Nuryah Lilik Fepila Lilla Afifah Luqyana Dhiya Amira M. J. Dewiyani Sunarto Ma'allaili, Serlly Hindun Manuharawati MASRIYAH Masriyah Masriyah Mawaddah, Aisy Rohmah Najahy Mega Teguh Budiarto Megacelia Maharani Mia Saskia Miftakhul Jannah Misu, La Moh. Hafiyusholeh Mohammad Edy Nurtamam, Mohammad Edy Muhammad Afifuddin Otniel Sukma Priyambodo Pradana, Raditya Bagus Gilang RADEN SULAIMAN Raden Sulaiman Rahaju, Endah Budi Ria Fibriana Sari Rosdiana Rosdiana Rosdiana Rosdiana RUDIANTO ARTIONO, RUDIANTO Sabita Ellania Rahmah Saleh Saleh Saleh Saleh, Saleh Salsabila, Unik Hanifah Salwa Yuliantina Sari, Ria Fibriana Sely Purwanti Ningsih Septi Triyani Setianingsih, Rini Siti Khabibah Siti Maghfirotun Amin Siti Rois'satul Azmil Siti Suparmi Sri Joeda Andajani Sri Joeda Andajani Sri Subarinah St. Suwarsono Sukma Kusuma Ambarwati Susanah Susanah Tatag Yuli Eko Siswono Umi Hanifah Wagino Wagino Wihda Urfita Syafiti Wijaya, Henry Putra Imam Yuliantina, Salwa Yuliyati Yuliyati Yunianti, Dwi Nur Zahro, Fatimatus