p-Index From 2021 - 2026
11.758
P-Index
This Author published in this journals
All Journal Tekno : Jurnal Teknologi Elektro dan Kejuruan ELKHA : Jurnal Teknik Elektro Mechatronics, Electrical Power, and Vehicular Technology Jurnal Simetris Bulletin of Electrical Engineering and Informatics Jurnal Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Jurnal Pekommas Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics JURNAL NASIONAL TEKNIK ELEKTRO Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JOIV : International Journal on Informatics Visualization International Journal of Artificial Intelligence Research JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Knowledge Engineering and Data Science Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Jurnal Sains dan Informatika Pendas : Jurnah Ilmiah Pendidikan Dasar ILKOM Jurnal Ilmiah SENTIA 2017 SENTIA 2016 MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Lectura : Jurnal Pendidikan Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) PEDULI: Jurnal Imiah Pengabdian Pada Masyarakat Infotekmesin Buletin Ilmiah Sarjana Teknik Elektro International Journal of Visual and Performing Arts Jurnal Mnemonic Frontier Energy System and Power Engineering Masyarakat Berdaya dan Inovasi Community Development Journal: Jurnal Pengabdian Masyarakat Indonesian Journal of Data and Science Letters in Information Technology Education (LITE) Jurnal Graha Pengabdian Jurnal Abdimas Berdaya : Jurnal Pembelajaran, Pemberdayaan dan Pengabdian Masyarakat Science in Information Technology Letters International Journal of Engineering, Science and Information Technology International Journal of Robotics and Control Systems ALINIER: Journal of Artificial Intelligence & Applications Ilmu Komputer untuk Masyarakat SinarFe7 Jurnal Maklumatika Jurnal Masyarakat Madani Indonesia Applied Engineering and Technology Jurnal Ekonomi, Bisnis dan Pendidikan (JEBP) Jurnal Inovasi Teknologi dan Edukasi Teknik PROSIDING SEMINAR NASIONAL PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT (SNPPM) UNIVERSITAS MUHAMMADIYAH METRO Bulletin of Social Informatics Theory and Application Karunia: Jurnal Hasil Pengabdian Masyarakat Indonesia Jurnal Informatika Polinema (JIP) ABDI UNISAP: Jurnal Pengabdian Kepada Masyarakat Journal of Engineering and Technological Sciences Jurnal ilmiah teknologi informasi Asia
Claim Missing Document
Check
Articles

Mono Background and Multi Background Datasets Comparison Study for Indonesian Sign Language (SIBI) Letters Detection using YOLOv8 Andriyanto, Teguh; Handayani, Anik Nur; Ar Rosyid, Harits; Wiryawan, Muhammad Zaki; Azizah, Desi Fatkhi; Liang, Yeoh Wen
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.3462

Abstract

The research in this paper focuses on the detection of Indonesian Sign Language System (SIBI) letters using the YOLOv8 object detection model. The study compares two datasets, one with mono-background (a simple, uniform background) and another with multi-background (complex and varied backgrounds). The research aims to evaluate how the complexity of image backgrounds affects the performance of the YOLOv8 model in detecting SIBI letters This study uses a dataset consisting of 24 SIBI letters (excluding J and Z due to the complexity of their gestures), sourced from Mendeley. The dataset was processed with and without data augmentation (rotation, brightness adjustments, blur, and noise) to test the model under various conditions. Four models were trained and tested: one using mono-background images, another using augmented mono-background images, a third using multi-background images, and a final model trained on augmented multi-background images. The results showed that the YOLOv8 model performed best with the multi-background dataset, achieving a precision of 0.995, recall of 1.000, F1 score of 0.997, and mAP50 of 0.994Adding to the model made it better at generalizing, but it took longer to train. The study finds that multi-background datasets with augmentation make the model much better at finding SIBI letters in real-world settings. This makes it a promising tool for projects that aim to improve communication for deaf people in Indonesia. The study suggests that more research should be done on augmentation techniques and bigger datasets to make detection more accurate. 
Revealing Interaction Patterns in Concept Map Construction Using Deep Learning and Machine Learning Models Laily, F.ti Ayyu Sayyidul; Prasetya, Didik Dwi; Handayani, Anik Nur; Hirashima, Tsukasa
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 24 No. 2 (2025)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4641

Abstract

Concept maps are educational tools for organizing and representing knowledge, enhancing comprehension, and memory retention. In concept map construction, much knowledge can be utilized. Still, concept map construction is complex, involving actions that reflect a user’s thinking and problemsolving strategies. Traditional methods struggle to analyze large datasets and capture temporal dependencies in these actions. To address this, the study applies deep learning and machine learning techniques. This research aims to evaluate and compare the performance of Long Short-Term Memory (LSTM), K-Nearest Neighbors (K-NN), and Random Forest algorithms in predicting user actions and uncovering user interaction patterns in concept map construction. This research method collects and analyzes interaction logs data from concept map activities, using these three models for evaluation and comparison. The results of this research are that LSTM achieved the highest accuracy (83.91%) due to its capacity to model temporal dependencies. Random Forest accuracy (80.53%), excelling in structured data scenarios. K-NN offered the fastest performance due to its simplicity, though its reliance on distance-based metrics limited accuracy (70.53%). In conclusion, these findings underscore the practical considerations in selecting models for concept map applications; LSTM demonstrates effectiveness in predicting user actions and excels for temporal tasks, while Random Forest and K-NN offer more efficient alternatives in computational.
Intelligent Weighing Machine untuk Meningkatkan Keakuratan Berat Produk Bubuk Herbal Instan Sujito; Sendari, Siti; Handayani, Anik Nur; Gumilar, Langlang; Utomo, Imam Tree; Fakhruddin, Dhiyaurrahman
ABDI UNISAP: Jurnal Pengabdian Kepada Masyarakat Vol. 1 No. 2 (2023): ABDI UNISAP: Jurnal Pengabdian Kepada Masyarakat
Publisher : UPT Publikasi dan Penerbitan Universitas San Pedro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59632/abdiunisap.v1i2.112

Abstract

Syarimpon merupakan usaha yang didirikan oleh Afiani Fadiana pada tahun 2017 yang berlokasi di Perumahan Persada Bhayangkara No.G3, Pangetan, Kecamatan Singosari, Kabupaten Malang. yang bergerak dalam bidang produksi minuman herbal instan dan sudah mengembangkan minuman herbal instan dengan kemasan yang menarik dan sudah memiliki berbagai perizinan mulai dari NIB ( Nomor Induk Berusaha), PIRT (Produk Industri Rumah Tangga), Perizinan penetapan produk halal dan produk sudah HAKI (Hak Kekayaan Intelektual) namun Syarimpon ini mengalami permasalahan mengenai proses penimbangan berat produk masih menggunakan cara manual dan memakan waktu pada saat proses penimbangan dan kurangnya keakuratan dari timbangan yang digunakan. Dengan adanya program pengabdian ini diharapkan mampu mengatasi masalah dari mitra dengan mentransfer teknologi Intelligent Weighing Machine guna meningkatkan keakuratan berat produk dengan cerdas dan lebih efisien. Tujuan dari program pengabdian kepada masyarakat ini menghasilkan Intelligent Weighing Machine yang diharapkan mampu mengurangi waktu dalam proses penimbangan dan membantu mengatasi permasalahan selama proses produksi mereka dan dapat mempertahankan kualitas dari minuman herbal instan yang mereka produksi. Hasil dari program PKM ini melakukan pengembangan Intelligent Weighing Machine alat ini didesain untuk memberikan kemudahan untuk pengguna sehingga mempercepat proses penimbangan dan meningkatkan keakuratan berat bersih produk sehingga dapat mengurangi waktu yang digunakan untuk menimbang serta memastikan berat bersih produk sesuai standar yang telah disesuaikan oleh UMKM Syarimpon dan memberikan dampak positif untuk penjualan dan produksi mereka.
PERBANDINGAN METODE NAÏVE BAYES DAN C4.5 UNTUK MEMPREDIKSI MORTALITAS PADA PETERNAKAN AYAM BROILER Baihaqi, Dimas Imam; Handayani, Anik Nur; Pujianto, Utomo
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 10, No 1 (2019): JURNAL SIMETRIS VOLUME 10 NO 1 TAHUN 2019
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (185.135 KB) | DOI: 10.24176/simet.v10i1.2846

Abstract

Ayam broiler adalah jenis ternak yang paling cepat untuk dipanen. Namun dalam berternak ayam broiler pasti banyak masalah yang dihadapi contohnya adalah tingkat kematian. Untuk menekan kerugian, para peternak sebaiknya memperhatikan faktor-faktor apa saja yang menyebabkan kematian ayam tersebut. Beberapa penelitian yang meneliti tentang ayam broiler menggunakan metode percobaan dan RAL. Namun masih belum ada yang meneliti mortalitas ayam broiler menggunkan komputasi. Untuk mengetahui metode mana yang lebih baik untuk memprediksi mortalitas pada peternakan ayam broiler dilakukan penelitian perbandingan metode Naïve Bayes dan C4.5. Hasil dari perbandingan akan dievaluasi menggunakan confution matrix. Hasil dari pengujian data menggunakan confution matrix menghasilkan nilai akurasi dari metode C4.5 lebih besar dari pada metode Naïve Bayes. Nilai akurasi dari metode C4.5 adalah 93% dan nilai akurasi dari metode Naïve Bayes adalah 88.66%.
Pelatihan Robot Edu Bagi Siswa SDN Sumbersuko di Desa Sumbersuko Kecamatan Wagir Kabupaten Malang Handayani, Anik Nur; Lestari, Dyah; Sendari, Siti; Fadlika, Irham
Ilmu Komputer untuk Masyarakat Vol 1, No 1 (2020)
Publisher : Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (147.94 KB) | DOI: 10.33096/ilkomas.v1i1.770

Abstract

Sekolah Dasa Negeri Sumbersuko meyakini bahwa pada hakikatnya setiap anak memiliki beragam kecerdasan (multiple intelligences) yang menunggu untuk diungkap, digali, dilatih dan dikembangkan. Sekolah Dasa Negeri Sumbersuko mengupayakan sebaik-baiknya dan menyediakan beragam kegiatan pembelajaran. Tujuannya adalah untuk mengembangkan kecerdasan majemuk yang ada pada anak didik. Maka dari itu kami membantu dengan mengadakan pengabdian kepada pendidikan khusunya di SDN Sumbersuko dengan menggunakan robot edu untuk proses pembelajaran. robot yang dibuat masih dalam bentuk analog belum bisa diprogram. Kegiatan pelatihan robot edu ini dapat memberikan kesempatan belajar yang lebih dalam mengenai pemrograman dasar. Ilmu pemrograman menjadi keterampilan yang penting bagi anak-anak yang tumbuh di jaman teknologi ini. Diharapkan program Pengabdian pada Masyarakat yang diimplementasikan dapat mendukung proses pembelajaran dengan menggunakan robot di Sekolah Dasa Negeri Sumbersuko.
Forecasting Solar Irradiation on Solar Tubes Using the LSTM Method and Exponential Smoothing Handoko, Wahyu Tri; Muladi, Muladi; Handayani, Anik Nur
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26395

Abstract

Sunlight is an alternative energy source that can be used as a substitute for fossil fuels. Renewable energy potential has not been widely utilized, especially in Indonesia. Utilization of sunlight, one of which is done indoors to save electricity and the source is not limited. This study aims to predict solar irradiance to determine the value of sunlight intensity in an area as the main source of the utilization of renewable electrical energy through the solar tube system with the LSTM method. This low-cost system offers a renewable way and considers the potential for solar radiation as an energy-efficient alternative based on the intensity of light captured by the solar tube. This research uses two methods. The LSTM method is a recurrent neural network forecasting technique that can study deeply and extract temporal relationships in data because of its large architecture. The exponential smoothing method is part of the time series forecasting technique and is used when the dataset has no cyclic variance and trend. Data collection was carried out in sunny conditions because it represents a stable condition in sunlight. The results obtained from the two methods are evaluated with RMSE and MAE values to choose the optimal approach. Due to lower RMSE and MAE values in this comparison, LSTM performs better than Multiple Repeat and Exponential Smoothing in terms of performance.
Performa Metode Klasifikasi Tunggal dan Ensemble Model dalam Identifikasi Baku Mutu Air Prasetya Widiharso; Siti Sendari; Anik Nur Handayani; Nastiti Susetyo Fanani Putri
Infotekmesin Vol 13 No 2 (2022): Infotekmesin: Juli, 2022
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v13i2.1529

Abstract

Water quality classification for the needs of recreational facilities, livestock, fisheries, and plantations is needed to determine utilization based on water quality according to national water quality standards. The methods used in this research are K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naïve Bayes (NB), and Ensemble Model. The parameters measured consisted of temperature, TDS, TSS, pH, COD, BOD, DO, and rainfall. The main objective of this research is to discover the performance of a single classification method and ensemble model on data types with unbalanced class distributions. Classification objects are divided into two classes. First, is the class for the designation of recreational facilities, fisheries, and livestock. Second, the class for the allotment of crop cultivation. The test results of the application of the KNN obtained 86%, SVM obtained 87%, and NB obtained 90.57%. Meanwhile, through the ensemble model, the results obtained are 94.43% Bagging Classifier, 94.96% Gradient Boosting Classifier, and 95.94% Adaboost Classifier
Bi-LSTM and Attention-based Approach for Lip-To-Speech Synthesis in Low-Resource Languages: A Case Study on Bahasa Indonesia Setyaningsih, Eka Rahayu; Handayani, Anik Nur; Irianto, Wahyu Sakti Gunawan; Kristian, Yosi
Buletin Ilmiah Sarjana Teknik Elektro Vol. 7 No. 4 (2025): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v7i4.14310

Abstract

Lip-to-speech synthesis enables the transformation of visual information, particularly lip movements, into intelligible speech. This technology has gained increasing attention due to its potential in assistive communication for individuals with speech impairments, audio restoration in cases of missing or corrupted speech signals, and enhancement of communication quality in noisy or bandwidth-limited environments. However, research on low-resource languages, such as Bahasa Indonesia, remains limited, primarily due to the absence of suitable corpora and the unique phonetic structures of the language. To address this challenge, this study employs the LUMINA dataset, a purpose-built Indonesian audio-visual corpus comprising 14 speakers with diverse syllabic coverage. The main contribution of this work is the design and evaluation of an Attention-Augmented Bi-LSTM Multimodal Autoencoder, implemented as a two-stage parallel pipeline: (1) an audio autoencoder trained to learn compact latent representations from Mel-spectrograms, and (2) a visual encoder based on EfficientNetV2-S integrated with Bi-LSTM and multi-head attention to predict these latent features from silent video sequences. The experimental evaluation yields promising yet constrained results. Objective metrics yielded maximum scores of PESQ 1.465, STOI 0.7445, and ESTOI 0.5099, which are considerably lower than those of state-of-the-art English systems (PESQ > 2.5, STOI > 0.85), indicating that intelligibility remains a challenge. However, subjective evaluation using Mean Opinion Score (MOS) demonstrates consistent improvements: while baseline LSTM models achieve only 1.7–2.5, the Bi-LSTM with 8-head attention attains 3.3–4.0, with the highest ratings observed in female multi-speaker scenarios. These findings confirm that Bi-LSTM with attention improves over conventional baselines and generalizes better in multi-speaker contexts. The study establishes a first baseline for lip-to-speech synthesis in Bahasa Indonesia and underscores the importance of larger datasets and advanced modeling strategies to further enhance intelligibility and robustness in low-resource language settings.
Trip Pattern Impact of Electric Vehicles in Optimized Power Production using Orca Algorithm Afandi, Arif Nur; Zulkifli, Shamsul Aizam; Korba, Petr; Sevilla, Felix Rafael Segundo; Handayani, Anik Nur; Aripriharta, Aripriharta; Wibawa, Aji Presetya; Afandi, Farrel Candra Winata
Journal of Engineering and Technological Sciences Vol. 56 No. 4 (2024)
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2024.56.4.3

Abstract

Power systems are run by combining different energy producers while the demand serves as the system’s energy user and covers all of the non-flexible and flexible loads, including electric vehicles (EVs). This study investigated the trip pattern impact of EVs, utilizing the Orca Algorithm (OA), in optimizing power production, applied to the IEEE-62 bus system as a model. Considering one-way and two-way trips over several categories of typical roads, the mobility of 14,504 EVs, divided into four driving patterns (Mobility 1-4), was estimated. Approximately 2,933 EVs traveled for working/business/study purposes, 3,862 EVs traveled for service/shopping purposes, approximately 5,376 EVs traveled for leisure purposes, while 2,334 EVs traveled for other reasons. The system had a total demand of 18,234.9 MVA, including 3,352.8 MW for electric vehicles and 14,151.5 MW for non-flexible loads. The EVs traveled a total of 119,018 km in Mobility 1, 141,799 km in Mobility 2, 184,614 km in Mobility 3, and 82,637 km in Mobility 4. The power produced was also used to charge the EVs during trips.
Multi-objective MPPT Optimisation for PV System Using QHBM Algorithm in Madura Island Nugraha, Agil Zaidan; Aripriharta; Handayani, Anik Nur
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 4, November 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i4.2337

Abstract

This study presents the application of the Queen Honey Bee Migration (QHBM) algorithm, for Maximum Power Point Tracking (MPPT) in an off-grid photovoltaic (PV) system on Madura Island. Implemented in Python, QHBM optimizes a 3.3 kW PV array (six polycrystalline silicon panels, 550 W each, configured in 2-series and 3-parallel) under tropical conditions (irradiation: 860–970 W/m², temperature: 26–30°C) using data from the East Java BMKG Trunojoyo Meteorological Station. QHBM’s multi-objective optimization balances power conversion efficiency (95.0–99.1%), power quality (THD < 4.5%), and component longevity (current ripple: 3.1–3.2 A), outperforming Perturb and Observe (P&O: 78% efficiency under low irradiation and 34% under partial shading) and Particle Swarm Optimization (PSO: 85% and 88%). Trade-offs are managed by minimizing ripple-induced thermal stress (10–15% lower than P&O) and achieving rapid convergence (0–3 ms vs. 300–500 ms for PSO), ensuring reliability in Madura’s dynamic climate. The system, integrated with a single-phase full-bridge inverter (96% efficiency), delivers a consistent daily energy output of 14,941.87 Wh (SD ±267.45 Wh) and reduces CO2 emissions by 118.49 kgCO2e annually. QHBM was chosen over P&O and PSO for its superior efficiency, faster response, and robustness under partial shading and noisy irradiation (±10% variations), offering a scalable solution for sustainable electrification in Indonesia’s archipelagic regions.
Co-Authors A.N. Afandi Abdul Rachman Manga&#039; Abdullah Iskandar Syah Achmad Hamdan Achmad Safi’i Achmad Safi’i Adi Izhar Bin Che Ani Adi Prastowo, Nur Kodrad Adib Nur Sasongko Adim Firmansah Adipura, Laksamana Afandi, Farrel Candra Winata Agusta Rakhmat Taufani Ahmad Dardiri Aji Prasetya Wibawa Al-Jabbar, Habib Muhammad Amaliya, Sholikhatul Andrew Nafalski Anita Qotrun Nada Anusua Ghosh Ardiansyah, Lucky Arengga, Danang Ari Priharta Ari Priharta Arif Widodo, Baskoro Aripriharta - Ariyanta, Nadindra Dwi Arwani, Wafiq Nur Muhamamd Asfani, Khoirudin Atmaja, Muhammad Bayu Setya Wahyu Ayu Puspita Azhryl Assagaf Aziz, Faiz Syaikhoni Azizah, Desi Fatkhi Azizah, Devi Nur Bagaskoro, Muhammad Cahyo Baihaqi, Dimas Imam Baihaqi, Dimas Imam Baskoro Arif Widodo Bayu Prasetyo Bayu Prasetyo, Bayu Bin Che Ani, Adi Izhar Burhanuddin, Mohd Aboobaider Chalista Yulia Hazizah Chuttur, Mohammad Yasser Damanhuri, Nor Salwa Damayanti, Farradila Ayu Damayanti, Masyita Danang Arengga Danang Arengga Wibowo Dedes, Khen Devita Maulina Putri, Devita Maulina Dewi Aprilia Lintang Dewi, Ellya Kusna Aura Didik Dwi Prasetya Difa Hananta Firdaus Am Dika Fikri L Dimas Wahyu Wibowo Dityo Kreshna Argeshwara Dityo Kreshna Argeshwara Dolly Indra Dwi Prihanto Dyah Lestari Dyah Rosita Anggraeni Edinar Valiant Hawali Edwin Meinardi Trianto Eka Rahayu Setyaningsih Erwina Nurul Azizah F.ti Ayyu Sayyidul Laily Faiz Syaikhoni Aziz Fakhruddin, Dhiyaurrahman Faqih, Fauziah Nur Faqih, Kamil Faradhila Saffa Dhamira Farah Nisa’ Salsabila Fauzi, Juwita Annisa Fauzi, Rochmad Felix Andika Dwiyanto Ferina Ayu Pusparani Gianika Roman Sosa Graciello, Manuel Tanbica Gunawan Budi P Guyub Raharjo Gwo-Jiun Horng Haffas Zikri Ariyandi Hakkun Elmunsyah Halimahtus Mukminna, Halimahtus Handoko, Wahyu Tri Harits Ar Rasyid Harits Ar Rosyid Hartarto Junaedi Hary Suswanto Hasriani Hasriani, Hasriani Hermansyah Hermansyah Heru Herwanto Heru Wahyu Herwanto Hirashima, Tsukasa Hitipeuw, Emanuel Hosen, Moh I Made Wirawan Ida Ayu Putu Sri Widnyani Ihsan Al-Fikri Ira Kumalasari Irfan Ramadhani Irham Fadlika Jehad A. H. Hammad Jehad A.H. Hammad Jevri Tri Ardiansah Jevri Tri Ardiansah Joumil Aidil Saifuddin Kamil Faqih Kartika Kirana Kasmira Kasmira Katya Lindi Chandrika Khasanah, Elok Rosyidatul Khumairoh, Fidyah Nur Khurin Nabila Kinasih, Agnes Nola Sekar Kirom, M Kohei Arai Kohei Arai Kohei Arai Kohei Arai Korba, Petr Kurniawan, Wendy Cahya Kusumawardana, Arya Laili, Mery Nur Laily, F.ti Ayyu Sayyidul Laistulloh, Dika Fikri Lalu Ganda Rady Putra Langlang Gumilar Larasati, Jade Rosida Leonel Hernandez, Leonel Lestari , Widya Liang, Yeoh Wen Liang, Yoeh Wen lilis nurhayati M. Adib Nursasongko M. Kirom, M. M. Nuzuluddin M. Rodhi Faiz M. Rodhi Faiz Machumu, Paul Igunda Made Ayu Dusea Widyadara - Universitas Nusantara Kediri, Made Ayu Dusea Widyadara Mahamad, Abd Kadir Maqbullah, Afwatul Ming Foey Teng, Ming Foey Moh Zainul Falah Moh. Zainul Falah Mohammad Agung Rizki Mohammad Rizky Kurniawan Mohammad Yussril Asri Mohsen Samadi Mokh Sholihul Hadi Much. Arafat Al Mubarok Muchamad Wahyu Prasetyo Muhamad Arifin Muhamad Arifin, Muhamad Muhammad Arifin Muhammad Hafiizh Muhammad Holqi Rizki Azhari Muhammad Iqbal Akbar Muhammad Ridwan Muhammad Ulinnuha Musthofa Muhammad Younas Darvish Muhammad Zaky Rahmatsyah Muladi Mumtaazah, Muhammad Athar Mutiara, Titi Nadindra Dwi Ariyanta Nandang Mufti Nastiti Susetyo Fanani Putri Nastiti Susetyo Fanani Putri Nastiti Susetyo Fanany Putri Naufal Rizaldi Gunawan Ningrum, Gres Dyah Kusuma Nisa, Khoirotun Nizaar, Roub Norzanah Rosmin Norzanah Rosmin Nugraha, Agil Zaidan Nugraha, Youngga Rega Nunung Nurjanah Nur Halim Nur Rahma, Andika Bagus Nurus Sihab Aminudin Nuzuluddin, M. Osamu Fukuda Prasetya Widiharso Prasetya Widiharso Prasojo, Fadillah Pratama, Awanda Setya Sanfajar Pratama, Diaz Octa Pratama, Wahyu Styo Priharta, Ari Primadi, Wahyu Purnomo, Purnomo Putra Utama, Agung Bella Putri Galuh Ningtiaz Qomaria, Ulfa Rahman, Nukleon Jefri Nur Rahmat Samudra Anugrah, Muhammad Ramadhani, Lolita Ratnasari, Diah Ayu Resty Wulanningrum Reza Setyawan Rini Nur Hasanah Rismayanti, Nurul Romadlon, Muhammad Rizqi Rosa Andrie Asmara Rosa Andrie Asmara Rosyidin, Zulkham Umar Rusdha Aulia Salah Abdullah Khalil Abdulrahman Salsabila, Reni Fatrisna Saodah Omar Saputra, Ismed Eko Hadi Selly Handik Pratiwi Seno Isbiyantoro Setyaningsih, Eka Rahayu Setyawan, Wahyu Dwi Sevilla, Felix Rafael Segundo Siti Sendari Slamet Wahyudi Slamet Wibawanto Soraya Norma Mustika Srini Suciati, Reski Dwi Suryani, Ani Wilujeng Syaad Patmantara Syaichul Fitrian Akbar Taw, Phillip Teguh Andriyanto, Teguh Timothy John Pattiasina Titaley, Gilberth Valentino Tsukasa Hirashima Ulum, Khoirul Urnika Mudhifatul Jannah Utama, Agung Bella Putra Utomo Pujianto Utomo, Imam Tree Veithzal Rivai Zainal Wahyu Arbianda Yudha Pratama Wahyu Irianto Wahyu Primadi Wahyu Sakti Gunawan Irianto Wahyu Tri Handoko Wibawa, Aji Presetya Wibowo, Kusmayanto Hadi Wicaksana, Ardi Anugerah Widiharso, Prasetya Wijaya, Mikel Ega Wiryawan, Muhammad Zaki Yogi Dwi Mahandi Yosi Kristian Yu, Tony Yudha Islami Sulistya Yuliana Melita Pranoto Yuni Rahmawati Zaeni, Ilham Ari Elbaith Zufida Kharirotul Umma Zulkham Umar Rosyidin Zulkham Umar Rosyidin Zulkifli, Shamsul Aizam