Articles
Student's Mathematical Connection to Problem-Solving Based on Rational Personality Types
Alkans Sofyawati Sutrisno;
Toto Nusantara;
Susiswo Susiswo
Jurnal Pendidikan Sains Vol 7, No 1: March 2019
Publisher : Pascasarjana Universitas Negeri Malang (UM)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1523.311 KB)
|
DOI: 10.17977/jps.v7i1.12499
Abstract: The purpose of this study is to describe students’ mathematical connection of rational type students in solving mathematics problem. The research data was obtained by analyzing the answer sheets and interview of two subjects based on mathematical connection indicators. The results show the process of mathematical connection in everyday life that students do with rational personality type is complete. However, different results are found that in the connection between mathematical concepts and mathematical process connection processes as the equivalent representation of students with rational personality types is not yet complete.Key Words: mathematical connection, rational personality typesAbstrak: Tujuan penelitian ini untuk mendeskripsikan koneksi matematis siswa bertipe kepribadian rasional dalam memecahkan masalah Matematika. Penelitian ini merupakan penelitian deskriptif-kualitatif. Data diperoleh dari lembar jawaban dan wawancara terhadap dua subjek kemudian dianalisis berdasarkan indikator koneksi matematis. Hasil penelitian menyimpulkan bahwa subjek menunjukkan koneksi Matematika dalam kehidupan sehari-hari secara lengkap. Namun hasil berbeda ditemukan bahwa proses koneksi antar konsep Matematika dan proses koneksi prosedur Matematika sebagai representasi yang ekivalen dari siswa dengan tipe kepribadian rasional adalah belum lengkap.Kata kunci: koneksi matematis, tipe kepribadian rasional
Students’ semantic reasoning characteristics on solving double discount problem
Lydia Lia Prayitno;
Purwanto Purwanto;
Subanji Subanji;
Susiswo Susiswo;
Ninik Mutianingsih
JRAMathEdu (Journal of Research and Advances in Mathematics Education) Volume 7 Issue 2 April 2022
Publisher : Department of Mathematics Education, Universitas Muhammadiyah Surakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.23917/jramathedu.v7i2.16325
Semantic is associated with the relationship between symbol, reference, and the problem’s context involved in the problem-solving process which also involves reasoning and decision-making. Hence, this study describes the characteristics of students’ semantic reasoning to solve the double discounts problem. 51 high school students in Sidoarjo participated in this qualitative study. The data were collected through 15-20 minutes problem-solving tests. The students' answers were grouped into correct and wrong answers. The correct answers were then regrouped once more based on the strategies used by the students to answer the test and to identify their semantic reasoning characteristics. The data were analyzed by reducing, classifying the think-aloud and observing. Then the similarity of characteristics of students' semantic reasoning when solving the double discount problem was identified. To test the accuracy of the data, triangulation method was used. This semantic reasoning was identified by (1) giving the problem situation, (2) stating the keywords and their meaning, (3) stating the relationship, (4) transforming it into a mathematics statement, (5) calculating based on their strategies, (6) decision making, and (7) completing the answer interpretation. This study contributes to developing basic knowledge in interpreting each process of solving ill-structured problems until finding a solution.
PEMBELAJARAN BERDASARKAN TEORI VAN HIELE BERBANTUAN HANDS ON ACTIVITY (HOA) UNTUK MENINGKATKAN KOMPETENSI PENGETAHUAN DAN KETERAMPILAN PEMECAHAN MASALAH
Ratna Titi Wulandari;
Akbar Sutawidjaja;
Susiswo Susiswo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol.1, No.8, Agustus 2016
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (687.974 KB)
|
DOI: 10.17977/jp.v1i8.6666
This study aims at examining the learning based on Van Hiele’s theory with Hands-on Activity (HOA) assisted to improve students’ knowledge and skill. The learning based on Van Hiele’s theory with Hands-on Activity (HOA) assisted consists of zero level, first level, and second level. In each level, there are five stages they are Information, guide orientation, explicitation, free orientation, integration in which Hands-on Activity (HOA) is used in one of the stages. This research is a classroom action research focusing on VII E in SMPN 3 Grabag, Magelang Regency. The result of this study showed that the learning based on Van Hiele’s theory with Hands-on Activity (HOA) assisted improves the students’ knowledge and skill.Penelitian ini bertujuan mendeskripsikan pembelajaran berdasarkan teori van Hiele berbantuan HOA untuk meningkatkan kompetensi pengetahuan dan keterampilan siswa. Pembelajaran berdasarkan teori van Hiele berbantuan HOA, yaitu pembelajaran yang melalui level 0, level 1, dan level 2. Setiap level ada 5 tahap: information, guide orientation, explicitation, free orientation, integration dan HOA digunakan di salah satu tahap tersebut. Penelitian ini adalah Penelitian Tindakan Kelas VII E di SMP N 3 Grabag, Kabupaten Magelang. Setelah peneliti melakukan pembelajaran berdasarkan teori van Hiele berbantuan HOA ternyata pengetahuan dan keterampilan pemecahan masalah garis dan sudut siswa tersebut meningkat.
Kesalahan Siswa dalam Menyelesaikan Masalah Tipe Higher Order Thinking Skills pada Materi SPLTV
Yrbayanti Putri Zaekhah;
Susiswo Susiswo;
Hery Susanto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 6, No 10: OKTOBER 2021
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.17977/jptpp.v6i10.15078
Abstract: This research was aimed to analyze student’s errors in solving higher order thinking skills in SPLTV. Research subject was two students grade X. The type of this research was qualitative descriptive. The data techniques of this research was test and interviews. The outcome of research showed that student made errors in solving higher order thinking skills in SPLTV. The aspect of analyzing were the errors of reading, transformation, process skills, and encoding. Evaluation aspect was the errors of process skills and encoding. Creating aspect was the errors of understanding and the errors of encoding.Abstrak: Penelitian ini bertujuan untuk menganalisis kesalahan siswa dalam menyelesaikan masalah tipe higher order thinking skills pada Materi SPLTV. Subjek penelitian adalah dua siswa kelas X. Jenis penelitian ini adalah deskriptif kualitatif. Teknik data dalam penelitian ini yaitu tes dan wawancara. Hasil penelitian menunjukkan bahwa siswa tersebut melakukan kesalahan dalam menyelesaikan masalah tipe higher order thinking skills pada materi SPLTV. Kesalahan pada aspek menganalisis yaitu kesalahan membaca, transformasi, keterampilan proses, dan penulisan jawaban akhir. Selanjutnya, pada aspek mengevaluasi yaitu kesalahan keterampilan proses dan penulisan jawaban akhir. Pada aspek mencipta yaitu kesalahan memahami dan kesalahan penulisan jawaban akhir.
Analisis Proses Berpikir Siswa Dalam Menyelesaikan Soal Geometri Spasial PISA
Dwi Rahmawati Utami;
Gatot Muhsetyo;
Susiswo Susiswo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 8: AGUSTUS 2018
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (564.984 KB)
|
DOI: 10.17977/jptpp.v3i8.11402
Abstract: PISA is one of international meassurement for student competence. PISA 2015 result show that Indonesia in the low position. This research aims to know the thinking procees of student in order to solve Spacial Geometry PISA problems. Thinking proses shows in cognitive maps using information process theory. This research using 3 students with high, middle, and low cognitive ability as subjects and given 6 problems according to PISA levels. This research shows that student with high cognitive ability having complete thinking proses, student with middle and low cognitive ability having a lost concept on the middle and high-level problems.Abstrak: PISA merupakan salah satu alat pengukuran kemampuan siswa. Dari hasil PISA 2015 Indonesia menduduki posisi rendah. Penelitian ini bertujuan untuk mengetahui proses berpikir siswa dalam menyelesaikan soal geometri spasial PISA. Proses berpikir ditunjukkan dalam pemetaan kognitif berdasarkan teori pemrosesan informasi. Penelitian menggunakan tiga orang siswa dengan kemampuan kognitif tinggi, rendah, sedang, rendah dengan mengerjakan enam soal mirip PISA yang merepresentasikan setiap level. Penelitian ini menunjukkan bahwa siswa berkemampuan tinggi mengalami proses berpikir yang sempurna, siswa berkempampuan sedang dan rendah mengalami hilang konsep pada soal level sedang dan atas.
Komunikasi Matematis Siswa Dalam Menyelesaikan Masalah Persamaan Garis Ketika Folding Back
Intan Syafitri;
Susiswo Susiswo;
Hendro Permadi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 10: Oktober 2019
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.17977/jptpp.v4i10.12816
Abstract: This research aims to the mathematical communication of students who experience folding back when solving mathematical problems. The eight grade students of SMP Islam Syabilurrosyad Malang have participated here. Student with high communication going through folding back effectively and clearly following logic reasoning. Student with high communication could write folding back result rightly and consecutively. Student with medium communication going through folding back after intervention. Student with medium communication have communicated folding back result clearly and consecutively but still there were mistakes in the last solution.Abstrak: Penelitian ini bertujuan untuk mendeskripsikan komunikasi matematis siswa yang mengalami folding back ketika menyelesaikan masalah matematika. Penelitian ini dilaksanakan di kelas VIII SMP Islam Syabilurrosyad kota Malang. Siswa dengan kemampuan tinggi mengomunikasikan folding backnya dengan efektif dan jelas disertai alasan logis. Subjek berkemampuan tinggi juga menuliskan respons hasil folding back nya dengan benar dan terurut. Subjek berkemampuan sedang mengalami folding back setelah adanya intervensi. Subjek mengomunikasikan hasil folding back dengan jelas dan terurut, namun masih terdapat kesalahan pada solusi akhir jawabannya.
Representasi Visual Dalam Menyelesaikan Masalah Pecahan
Royyan Faradiba;
Susiswo Susiswo;
Abdur Rahman As’ari
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 7: JULI 2019
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (539.261 KB)
|
DOI: 10.17977/jptpp.v4i7.12629
Abstract: This study aims to describe the visual representation of grade 5 students in elementary schools in solving fraction problems. The research method used is descriptive qualitative. Data is collected through interviews, recording and student work. The research subjects were 3 students namely those who had high, medium and low mathematical abilities based on the results of the last report card. The results showed that there was no relationship between students 'mathematical abilities and students' visual representation. Students with high mathematical abilities can accurately represent the concept of fractions in the form of a picture but cannot represent the concept of fraction multiplication and compare two fraction numbers into the exact image. Students with moderate and low mathematical abilities cannot represent fraction concepts and multiplication concepts and compare two fraction numbers into image shapes correctly. Based on the results of this study it is expected that the teachers will provide a deeper understanding of the use of visual representation in fraction learning.Abstrak: Penelitian ini bertujuan untuk mendeskripsikan representasi visual siswa kelas V sekolah dasar dalam menyelesaikan masalah pecahan. Metode penelitian yang digunakan adalah kualitatif deskriptif. Data dikumpukan melalui wawancara, perekaman dan pekerjaan siswa. Subjek penelitian berjumlah tiga siswa, yaitu siswa yang memiliki kemampuan matematika tinggi, sedang, dan rendah berdasarkan hasil rapor terakhir. Hasil penelitian menunjukkan bahwa tidak ada hubungan antara kemampuan matematika siswa dengan representasi visual siswa. Siswa berkemampuan matematika tinggi dapat merepresentasikan konsep pecahan ke dalam bentuk gambar dengan tepat, tetapi tidak dapat merepresentasikan konsep perkalian pecahan dan membandingkan dua bilangan pecahan ke dalam bentuk gambar dengan tepat. Siswa berkemampuan matematika sedang dan rendah tidak dapat merepresentasikan konsep pecahan, dan konsep perkalian serta membandingkan dua bilangan pecahan ke dalam bentuk gambar dengan tepat. Berdasarkan hasil penelitian ini diharapkan bagi para guru untuk memberikan pemahaman yang lebih dalam tentang penggunaan representasi visual dalam pembelajaran pecahan.
Kemampuan Pematematikaan Horizontal Siswa Sekolah Dasar dalam Menyelesaikan Masalah Bilangan Bulat Positif
Wulida Arina Najwa;
Susiswo Susiswo;
Abdur Rahman As’ari
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 12: DESEMBER 2018
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (450.896 KB)
|
DOI: 10.17977/jptpp.v3i12.12555
Abstract: One of the mathematisation processes in Realistic Mathematics Education is horizontal mathematisation. Using a qualitative approach, this research describes the horizontal mathematisation ability of grade 4 elementary school students in solving problem-solving questions on positive integers. The result of this research shows that there is a relationship between students' mathematical abilities and their horizontal mathematisation abilities. Students with moderate ability levels have moderate horizontal mathematisation abilities and students with high levels of ability have high horizontal mathematisation abilities.Abstrak: Salah satu proses matematisasi dalam Realistic Mathematics Education adalah pematematikaan horizontal. Penelitian ini menggunakan pendekatan kualitatif yang mendeskripsikan kemampuan pematematikaan horizontal siswa kelas IV sekolah dasar dalam menyelesaikan soal pemecahan masalah bilangan bulat positif. Hasil penelitian ini menunjukkan bahwa ada hubungan antara kemampuan matematika siswa dengan kemampuan pematematikaan horizontal siswa. Siswa pada tingkat kemampuan rendah memiliki kemampuan pematematikaan horizontal yang rendah, sedangkan siswa pada tingkat kemampuan tinggi memiliki kemampuan pematematikaan horizontal yang tinggi.
Identifikasi Kesalahan Siswa SMK Berdasarkan Newman dalam Pemecahan Masalah Nilai Mutlak Ditinjau dari Gaya Belajar
Edy Sutarto;
Susiswo Susiswo;
Hery Susanto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 6, No 11: NOVEMBER 2021
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.17977/jptpp.v6i11.15128
Abstract: Identifying the types of errors in class X AKL 1 SMKN 1 Pasuruan based on Newman in solving absolute value problems in terms of learning styles is the goal of this study. Research subjects were determined based on the results of questionnaires and problem-solving tests. One subject from each learning style was chosen if he answered the most and made a lot of mistakes in problem solving. Student answers errors were identified based on the Newman method. The results showed that the types of errors in the visual learning style subject were process skill errors and encoding errors. The auditory subjects performed the types of transformation errors, process skill errors, and encoding errors. Meanwhile, the kinesthetic subject made an encoding error.Abstrak: Mengidentifikasi jenis kesalahan siswa kelas X AKL 1 SMKN 1 Pasuruan berdasarkan Newman dalam pemecahan masalah nilai mutlak ditinjau dari gaya belajar merupakan tujuan dari penelitian ini. Subjek penelitian ditentukan berdasarkan hasil angket dan tes pemecahan masalah. Satu subjek dari masing-masing gaya belajar dipilih jika menjawab terbanyak serta banyak melakukan kesalahan dalam pemecahan masalah. Kesalahan jawaban siswa diidentifikasi berdasarkan metode Newman. Hasil penelitian menunjukkan jenis kesalahan subjek gaya belajar visual adalah process skill error dan encoding error. Subjek auditorial melakukan jenis kesalahan transformasion error, process skill error, dan encoding error, sedangkan subjek kinestetik melakukan jenis kesalahan encoding error.
Pelaksanaan Scaffolding untuk Mengatasi Kesulitan Siswa dalam Menyelesaikan Masalah PtLSV
Pradina Parameswari;
Tjang Daniel Chandra;
Susiswo Susiswo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 5: MEI 2018
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (670.849 KB)
|
DOI: 10.17977/jptpp.v3i5.11091
Abstract: The activity of finding answers to mathematics problems is not easy. Most of MTs Attaraqqie Malang’s students have difficulties when solve PtLSV problems. Students can’t transform narrative texts to mathematics sentence so that they are hard to find the right answer. Therefore, the researchers do a study that aims to describe the form of student difficulties in solving PtLSV problems and the implementation of scaffolding. This research is a qualitative-descriptive research. The research was conducted in MTs Attaraqqie Malang which was attended by 28 students of class VII. The PtLSV problem is given as many as three items. Three research subjects were selected from diagnostic tests, interviews, and mathematics teacher suggestions. The results showed that students: (1) difficulty of understanding the problem (can’t write down the information that was known and asked the question correctly) so assisted by scaffolding level 2 explaining and reviewing; (2) difficulty of devising a plan (can not determine the initial step and the right concept in solving the problem) and assisted by scaffolding level 1 environmental provision and level 2 reviewing; (3) difficulty of carrying out the plan (unable writing mathematical model according to the problem, not using the correct concept, and can not do systematic calculation so that the final result obtained is wrong) and assisted by scaffolding level 2 that is reviewing and restructuring and level 3 is developing conceptual thinking; (4) difficulty of looking back (not checking the truth of answers and difficult to interpreting answers) and assisted by scaffolding level 2 reviewing and level 3 developing conceptual thinking.Abstrak: Kegiatan menemukan jawaban dari permasalahan matematika tidaklah mudah. Sebagian besar siswa MTs Attaraqqie Malang kesulitan ketika menyelesaikan masalah PtLSV. Siswa tidak dapat mengubah teks naratif ke bentuk kalimat matematika sehingga mereka kesulitan untuk menemukan jawaban benar. Oleh sebab itu, peneliti melakukan penelitian yang bertujuan untuk mendeskripsikan bentuk kesulitan siswa dalam menyelesaikan masalah PtLSV dan pelaksanaan scaffoldingnya. Penelitian ini adalah penelitian kualitatif-deskriptif. Penelitian dilaksanakan di MTs Attaraqqie Malang yang diikuti oleh 28 siswa kelas VII. Masalah PtLSV diberikan sebanyak tiga item. Tiga subjek penelitian dipilih dari tes diagnostik, wawancara, dan saran guru matematika. Hasil penelitian menunjukkan bahwa siswa (1) kesulitan memahami masalah (tidak dapat menuliskan informasi yang diketahui dan yang ditanyakan pada soal dengan benar) sehingga dibantu dengan scaffolding level 2 yaitu explaining dan reviewing; (2) kesulitan menyusun rencana (tidak dapat menentukan langkah awal dan konsep yang tepat dalam menyelesaikan masalah) dan dibantu dengan scaffolding level 1 environmental provision dan level 2 reviewing; (3) kesulitan melaksanakan rencana (tidak menuliskan model matematika yang sesuai masalah, tidak menggunakan konsep yang benar, dan tidak dapat melakukan perhitungan yang sistematis sehingga hasil akhir yang diperoleh salah) sehingga diatasi dengan scaffolding level 2, yaitu reviewing dan restructuring serta level 3, yaitu developing conceptual thinking; (4) kesulitan memeriksa kembali (tidak mengecek kebenaran jawaban dan kesulitan menginterpretasi jawaban) dibantu dengan scaffolding level 2 reviewing dan level 3 yaitu developing conceptual thinking.