Claim Missing Document
Check
Articles

Keamanan Pengenalan Wajah Berbasis Deep Learning: Tinjauan Sistematis Serangan Adversarial dan Strategi Pertahanan (Systematic Literature Review) Syahputra, Fahmy; Sabrina, Elsa; Sitorus, Andika; Lubis, Khodijah May Nuri; Saragi, Frans Jhonatan; Nurrahma, Suci; Sinaga, Novi Novanni
TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, dan Humaniora Vol 6, No 4 (2025)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/trilogi.v6i4.13424

Abstract

Deep learning–based face recognition is widely adopted due to its strong performance, yet its susceptibility to attacks—particularly adversarial attacks—poses critical risks to the security and reliability of biometric systems. This study presents a Systematic Literature Review (SLR) to synthesize evidence on performance, vulnerabilities, and defense strategies in deep learning–based face recognition. The review follows PRISMA guidelines, including literature retrieval from reputable scholarly sources, deduplication, title/abstract screening, and full-text eligibility assessment based on predefined inclusion and exclusion criteria. Study quality is examined through critical appraisal, and findings are synthesized using thematic analysis, yielding four major themes: (1) model performance and factors influencing accuracy, (2) attack types and their impact on recognition outcomes, (3) defense mechanisms and their effectiveness, and (4) real-world deployment constraints (e.g., illumination, pose, image quality, and identity scale). The synthesis indicates that high accuracy does not necessarily imply high robustness; several defenses (e.g., adversarial training, attack detection, and robust learning) can improve resilience but may introduce trade-offs in computational cost and/or accuracy. This review provides a comparative synthesis and a conceptual model linking accuracy–attacks–defenses, and offers practical recommendations for model selection and security evaluation design. Limitations include heterogeneity in datasets and experimental protocols, inconsistent reporting metrics, and potential publication bias
Tinjauan Literatur Sistematis (2019–2025) Kinerja Decision Tree dan Neural Network (Deep Learning) serta Perbandingannya dengan Naive Bayes dan SVM Syahputra, Fahmy; Sabrina, Elsa; Br Tarigan, Febrinata Silvianna; Sarumaha, Matius Irvan; Rahmadhani, Alfi; Simanjorang, Sandha Calista; Gorat, Loveyanni Marito Benedikta
TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, dan Humaniora Vol 6, No 4 (2025)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/trilogi.v6i4.13429

Abstract

This study presents a Systematic Literature Review (2019–2025) comparing the performance of Decision Tree and Neural Network (Deep Learning) models, alongside their relative performance against Naive Bayes and Support Vector Machine (SVM). The review synthesizes empirical findings across multiple application domains—including healthcare, education, industry, and finance—focusing on commonly reported classification metrics such as accuracy, precision, recall, and F1-score. The synthesis indicates that Decision Trees are frequently preferred for structured/tabular data due to their high interpretability and transparent decision rules, which are valuable for accountable decision-making. In contrast, Neural Networks/Deep Learning tend to outperform on unstructured data (e.g., medical images and text) and complex non-linear patterns, albeit often with reduced explainability. In several studies, Naive Bayes remains competitive as a lightweight baseline, while SVM continues to be effective for high-dimensional feature spaces and specific classification settings. Overall, the review highlights that algorithm selection should be driven by data characteristics, problem complexity, interpretability requirements, and computational constraints, since no single algorithm consistently dominates across all scenarios.
Dampak AI Generatif (LLMS) terhadap Keterampilan Menulis dan Integritas Akademik: Tinjauan Literatur Sistematis Syahputra, Fahmy; Sabrina, Elsa; Barus, Tirta Yasa Agung; Farishi, M Farid Al; Adwiyah, Rabiatul; Ramadani, Nadila; Jauharah, Jauharah
TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, dan Humaniora Vol 6, No 4 (2025)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/trilogi.v6i4.13431

Abstract

This study aims to examine the impact of Generative AI (LLMs), such as ChatGPT, on students' writing skills and academic integrity through a Systematic Literature Review (SLR) of 15 relevant articles. The synthesis results reveal a significant duality effect, creating a dilemma between efficiency and quality. On one hand, LLMs are proven to be effective assistive co-pilots, which clearly enhance the technical efficiency of writing, accelerate the research workflow, and improve text cohesion and precision. However, this convenience triggers a substance quality crisis because students experience cognitive over-reliance, leading to Academic Deskilling the loss of the ability to independently practice critical reasoning and idea synthesis. This dependency is exacerbated by blind reliance on AI output and vulnerability to hallucinations that threaten the originality of the work. The consequence is a shift in the form of misconduct to the sophisticated practice of prompt engineering. To address these challenges, the literature emphasizes the necessity of pedagogical redesign and assessment redesign, which must focus on establishing ethics that ensure full transparency and accountability from students, and designing tasks that demand personal synthesis and reflective thinking.
Co-Authors -, Basyiah -, Basyiah Abdurrahman, Umar Abel Sinaga Adhitya, Wisnu Rayhan Adi Sutopo Adwiyah, Rabiatul Afandi Yusuf Lubis Afriansyah Pulungan, Wira Al Farishi, M Farid Al Husna, Saiba Aldy Primanda Barus Alhadi, M.Raflie Amalia, Mazaya Amanda, Nayla Ami, Hutri Amirhud Dalimunthe Ananda, Muhammad Rendi Angelina Putri Sembiring, Dheany Anggraini, Ade Anjelita Ardiansyah, Muhammad Fadhill Arif Rahman Armando, Gali Artiani Zebua Asisah, Fatma Atan Fices Barus Aulia Simangunsong, Marta Barus, Michael Steven F. Barus, Tirta Yasa Agung Br Tarigan, Febrinata Silvianna Calista, Sandha Chan, M Fajar Sahendra Debora Cindy Purba Dewi, Nora Ronita Diah Fadilillah Dwi Febrina Echon Haqnizo Eka Dodi Suryanto Eliasta Agustinus Sebayang Elsa Sabrina Elsa Sabrina Elsadin, Ratih Tri ELVI MAILANI Fakhri Lubis, Muhammad Fali, Rifki Farishi, M Farid Al Fattah, M Faturrahman, M Nadhif Fauzan Fachruzi Febiola Simatupang Fikri, Diyaul Fitri, Destiana Gali Armando Gaol, Liska Yuni Br Lumban Ghaitsa Zahira Lubis Ginting, Ariyantika Br Ginting, Leo Elfrata Gorat, Loveyanni Marito Benedikta Grace Roni Anuar Lase Guidio Leonarde Ginting Harahap, Ihsan Heldi Harahap, Zulkaidah Harun Sitompul Hawari, Mhd Fadhlan Hawari, Muhammad Fadhlan Hendratmo, Joko Heskia, Carlo Hutagalung, Namira Rahmadina Hutahean, Harvei Desmon Hutauruk, Karel Rolian Imam F Hutasuhut Imanta Sianturi Ira Gusdhini Harahap Irfanny, Riza Jauharah, Jauharah Jesica Aime Siahaan Lubis, Azmi Rizki Lubis, Khodijah May Nuri Lubis, Muhammad Fakhri Manurung, Marchell Gabriel Manurung, Ricardo Mardhiyah, Hanifah Maria Niscaya Ndruru Maulana, Bagoes Maya Sari Mediansyah, Teguh Arif Monika Putri Puspita Siagian Muhammad Bahrul Ilmi, Muhammad Bahrul MUHAMMAD ILHAM Munawwar, Muhammad Nababan, Leoni Try Oxana Naomi Pranatasyah Nasution, Aulia Rivansy Nasution, Henny Puspa Hendrani Nasution, Romadon Nasution, Willy Oktaviano Yehezkiel Naufal Ilham, Muhammad Nazwa, Safira Nurrahma, Suci Otniel Manurung Pangaribuan, Samuel Jonathan Pardede, Rachel Christa Masniari Parhehean Tua, Sarwedi Perangin-Angin, Yosa Steven Perdana, Nugraha Aditama Putra Permata, Sahly Na’ila Pinkan Ramadhani Pohan, Ahmad Rizal Padana Pradana, Raflie Sultan Pratama, Saras Putri, Safira Nazwa Putri, Tansa Trisna Astono Raden Muhammad Fathur Rahman Rafael Owen Kevin Nainggolan Raffi Hidayat Rafly Adhitiya Wardana Rahelta, Christina Elseria Rahelta, Cristina Elseria Rahmadhani, Alfi Rahmansyah Angga Saputra Rahmi Isnaini Rahmi, Alya Raisa Nadrah Shafira Hia Ramadani, Nadila Rambe, Rizkina Ramadhani Ririn Handayani Nst Rivany Virenzia Rizky Abimayu Utama Tanjung Rosnelli SABRINA, ELSA Salima, Khofifah Qalbun Salsabila, Azura Sakhi Sandy Sanjaya S Saragi, Frans Jhonatan Sari, Angereiny Citra Sarumaha, Matius Irvan Selvia Amanda Kayla Sembiring, Dheany Angelina Putri Shafira, Amanda Shinta Eva Celina Siagian, Martino Bijeloys Siahaan, Erika Togito Siboro, Sari Agustina Siburian, Joy Sihombing, Christian Johansen Silalahi, Yohanes Febrian Silitonga, Alfredo Alpansa Silvi Amelia Simangunsong, Marta Aulia Simanjorang, Sandha Calista Simanjuntak, Nadia Costarika Simbolon, Angga Baginda Sinaga, Enny Keristiana Sinaga, Novi Novani Sinaga, Novi Novanni Sirait, Steven Siregar, Hanfiandi Akbar Sitepu, Filza Kirani Br Sitepu, Jeremia Sitinjak, Reyvaldo Gilbert Sitorus, Andika Situmorang, Alvin Evraim Situmorang, Gaudensius J.A Sopiah Rahmadani br Torus Steven Eben Ezer Lase Suhairiani Suhairiani Syah, Razha Jamsik Syahbila, Azzahra Tanzila, Laili Tarigan, Febrinata Silvinna Boru Tarigan, Gabriel Frandika Tarigan, Ray Rivandi Teguh Mediansyah Teuku Naufal Togito Siahaan, Erika Ulwi, Muhammad Zaki Wahyu Ramadhi Wan Safari Ramadhan Yosa Perangin Angin Yunansyah Siregar, Wal Zai, Frans Pratamarifai Doya Zaki Ulwi, Muhammad Zherina Br Sitepu Zulfa, Zaid Zaidan Zulkifli Matondang