p-Index From 2021 - 2026
11.758
P-Index
This Author published in this journals
All Journal Tekno : Jurnal Teknologi Elektro dan Kejuruan ELKHA : Jurnal Teknik Elektro Mechatronics, Electrical Power, and Vehicular Technology Jurnal Simetris Bulletin of Electrical Engineering and Informatics Jurnal Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Jurnal Pekommas Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics JURNAL NASIONAL TEKNIK ELEKTRO Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JOIV : International Journal on Informatics Visualization International Journal of Artificial Intelligence Research JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Knowledge Engineering and Data Science Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Jurnal Sains dan Informatika Pendas : Jurnah Ilmiah Pendidikan Dasar ILKOM Jurnal Ilmiah SENTIA 2017 SENTIA 2016 MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Lectura : Jurnal Pendidikan Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) PEDULI: Jurnal Imiah Pengabdian Pada Masyarakat Infotekmesin Buletin Ilmiah Sarjana Teknik Elektro International Journal of Visual and Performing Arts Jurnal Mnemonic Frontier Energy System and Power Engineering Masyarakat Berdaya dan Inovasi Community Development Journal: Jurnal Pengabdian Masyarakat Indonesian Journal of Data and Science Letters in Information Technology Education (LITE) Jurnal Graha Pengabdian Jurnal Abdimas Berdaya : Jurnal Pembelajaran, Pemberdayaan dan Pengabdian Masyarakat Science in Information Technology Letters International Journal of Engineering, Science and Information Technology International Journal of Robotics and Control Systems ALINIER: Journal of Artificial Intelligence & Applications Ilmu Komputer untuk Masyarakat SinarFe7 Jurnal Maklumatika Jurnal Masyarakat Madani Indonesia Applied Engineering and Technology Jurnal Ekonomi, Bisnis dan Pendidikan (JEBP) Jurnal Inovasi Teknologi dan Edukasi Teknik PROSIDING SEMINAR NASIONAL PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT (SNPPM) UNIVERSITAS MUHAMMADIYAH METRO Bulletin of Social Informatics Theory and Application Karunia: Jurnal Hasil Pengabdian Masyarakat Indonesia Jurnal Informatika Polinema (JIP) ABDI UNISAP: Jurnal Pengabdian Kepada Masyarakat Journal of Engineering and Technological Sciences Jurnal ilmiah teknologi informasi Asia
Claim Missing Document
Check
Articles

YOLO-based object detection performance evaluation for automatic target aimbot in first-person shooter games Asmara, Rosa Andrie; Rahmat Samudra Anugrah, Muhammad; Wibowo, Dimas Wahyu; Arai, Kohei; Burhanuddin, Mohd Aboobaider; Handayani, Anik Nur; Damayanti, Farradila Ayu
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.6895

Abstract

First-person shooter (FPS) focuses on first-person perspective action gameplay, with gunfights usually giving the player a choice of weapons, significantly impacting how the player approaches or strategies. General military-themed FPS games have realistic models with actual weapons’ shapes and characteristics. This type of game requires high aiming accuracy while using a mouse on a PC. However, not all players have a fast response time in knowing the surrounding situation. New players may need aid when targeting enemies in the FPS world. One popular yet underhanded method is injecting a program code using a dynamic-link library (DLL) to manipulate memory and asset data from the game. Instead of DLL, we promote a novel approach using the player’s real-time game screen, detecting the person without injecting program code into the game. The you only look once (YOLO) algorithm is used as an object detector model since it can process images in real time for up to 45 frames per second. The proposed object detection has an outstanding performance with 65% accuracy, 98% precision, and 61% recall of 51 tests for each game. YOLO’s fastest detection speed produces an average of 35 FPS on the YOLO tiny variant using a mixed precision (half) graphics processing unit (GPU).
Pengembangan oven pengering telur asin asap cair berbasis IoT Nur Handayani, Anik; Mutiara, Titi; Nurjanah, Nunung; Nur Rahma, Andika Bagus
Masyarakat Berdaya dan Inovasi Vol. 5 No. 1 (2024)
Publisher : Research and Social Study Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33292/mayadani.v5i1.153

Abstract

Artikel ini bertujuan untuk memberikan gambaran pengembangan oven pengering untuk telur asin dengan asap cair, berbasis Internet of Thing (IoT) di SLB Autis Laboratorium UM. Metode pelaksanaan melalui observasi, pengembangan alat oven telur asin, forum grup discussion, dan sosialisasi alat. Sosialiasi dilaksanakan dengan tujuan memberi penyuluhan pembuatan telur asin dengan metoda asap cair, yang dilanjutkan dengan pengeringan menggunakan oven pengering. Hal ini dilakukan untuk mengembangkan oven yang sudah ada dengan metode oven asap. Kegiatan pengabdian ini dilaksanakan untuk memberikan pelatihan kepada para peserta didik disabilitas untuk melatih kemampuan mereka dalam bidang kewirausahaan, khususnya dalam pembuatan produk telur asin.
Hand image reading approach method to Indonesian Language Signing System (SIBI) using neural network and multi layer perseptron Bagaskoro, Muhammad Cahyo; Prasojo, Fadillah; Handayani, Anik Nur; Hitipeuw, Emanuel; Wibawa, Aji Prasetya; Liang, Yoeh Wen
Science in Information Technology Letters Vol 4, No 2 (2023): November 2023
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/sitech.v4i2.1362

Abstract

Classification complexity is the main challenge in recognizing sign language through the use of computer vision to classify Indonesian Sign Language (SIBI) images automatically. It aims to facilitate communication between deaf or mute and non-deaf individuals, with the potential to increase social inclusion and accessibility for the disabled community. The comparison of algorithm performance in this research is between the neural network algorithm and multi-layer perceptron classification in letter recognition. This research uses two methods, namely a neural network and a multi-layer perceptron, to measure accuracy and precision in letter pattern recognition, which is expected to provide a foundation for the development of better sign language recognition technology in the future. The dataset used consists of 32,850 digital images of SIBI letters converted into alphabetic sign language parameters, which represent active signs. The developed system produces alphabet class labels and probabilities, which can be used as a reference for the development of more sophisticated sign language recognition models. In testing using the neural network method, good discrimination results were obtained with precision, recall and accuracy of around ±81%, while in testing using the multi-layer perceptron method around ±86%, showing the applicative potential of both methods in the context of sign language recognition. Testing of the two normalization methods was carried out four times with comparison of the normalized data, which can provide further insight into the effectiveness and reliability of the normalization technique in improving the performance of sign language recognition systems.
Water quality identification based on remote sensing image in industrial waste disposal using convolutional neural networks Widiharso, Prasetya; Handoko, Wahyu Tri; Wibawa, Aji Prasetya; Handayani, Anik Nur; Teng, Ming Foey
Science in Information Technology Letters Vol 2, No 2: November 2021
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/sitech.v2i2.638

Abstract

Measuring the quality of river water used as industrial wastewater disposal is needed to maintain water quality from pollution. The chemical industry produces hazardous waste containing toxic materials and heavy metals. At specific concentrations, industrial waste can result in bacteriological contamination and excessive nutrient load (eutrophication). Using the Convolutional Neural Network (CNN), the method for measuring water quality processes remote sensing images taken via an RGB camera on an Unmanned Aerial Vehicle (UAV). The parameter measured is the change in the color of the river water image caused by the chemical reaction of the heavy metal content of industrial waste disposal. The test results of the Convolutional Neural Network (CNN) method in 2.01s/step obtained the value of training loss mode 17.86%, training accuracy 90.62%, validation loss 23.43%, validation accuracy 83.33%.
Decision tree based algorithms for Indonesian Language Sign System (SIBI) recognition Nugraha, Agil Zaidan; Salsabila, Reni Fatrisna; Handayani, Anik Nur; Wibawa, Aji Prasetya; Hitipeuw, Emanuel; Arai, Kohei
Applied Engineering and Technology Vol 3, No 2 (2024): August 2024
Publisher : ASCEE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/aet.v3i2.1536

Abstract

Indonesian Sign Language System (SIBI) recognition plays a crucial role in improving effective communication for individuals with hearing loss in Indonesia. To support automatic SIBI recognition, this research presents a performance analysis of two main algorithms, namely Decision Tree and C4.5, in the context of the SIBI recognition task. This research utilizes a rich SIBI dataset that includes a variety of SIBI signs used in everyday communication. Data pre-processing, model construction with both algorithms, and model performance evaluation using accuracy, precision, recall, and F1-score metrics are all part of the study. Regarding SIBI recognition accuracy, the experimental results demonstrate that the Decision Tree performs better than Decision Tree. The Decision Tree also makes models that are easier to understand, which is important for making communication systems based on SIBI.
Perbandingan Instance Segmentation Image Pada Yolo8 Wulanningrum, Resty; Handayani, Anik Nur; Wibawa, Aji Prasetya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 4: Agustus 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.1148288

Abstract

Seorang pejalan kaki sangat rawan terhadap kecelakaan di jalan. Deteksi pejalan kaki merupakan salah satu cara untuk mengidentifikasi atau megklasifikasikan antara orang, jalan atau yang lainnya. Instance segmentation adalah salah satu proses untuk melakukan segmentasi antara orang dan jalan. Instance segmentation dan penggunaan yolov8 merupakan salah satu implementasi dalam deteksi pejalan kaki. Perbandingan segmentasi pada dataset Penn-Fundan Database menggunakan yolov8 dengan model yolov8n-seg, yolov8s-seg, yolov8m-seg, yolov8l-seg, yolov8x-seg. Penelitian ini menggunakan dataset publik pedestrian atau pejalan kaki dengan objek multi person yang diambil dari dataset Penn-Fudan Database. Dataset mempunyai 2 kelas, yaitu orang dan jalan. Hasil perbandingan penggunaan model yolov8 model segmentasi yang terbaik adalah menggunakan model yolov8l-seg. Hasil penelitian didapatkan Instance segmentation valid box pada data orang, mAP50 tertinggi pada yolov8l-seg dengan nilai 0,828 dan mAP50-95 adalah 0,723. Instance segmentation valid mask pada orang nilai mAP50 tertinggi pada yolov8l-seg dengan nilai 0,825 dan mAP50-95 adalah 0,645. Pada penelitian ini, yolov8l-seg menjadi nilai terbaik dibandingkan versi yang lain, karena berdasarkan nilai mAP tertinggi pada valid mask sebesar 0,825.   Abstract   A pedestrian is very vulnerable to road accidents. Pedestrian detection is one way to identify or classify between people, roads or others. Instance segmentation is one of the processes to segment people and roads. Instance segmentation and the use of yolov8 is one of the implementations in pedestrian detection. Comparison of segmentation on Penn-Fundan Database dataset using yolov8 with yolov8n-seg, yolov8s-seg, yolov8m-seg, yolov8l-seg, yolov8x-seg models. This research uses a public pedestrian dataset with multi-person objects taken from the Penn-Fudan Database dataset. The dataset has 2 classes, namely people and roads. The results of the comparison using the yolov8 model, the best segmentation model is using the yolov8l-seg model. The results obtained Instance segmentation valid box on people data, the highest mAP50 on yolov8l-seg with a value of 0.828 and mAP50-95 is 0.723. Instance segmentation valid mask on people the highest mAP50 value on yolov8l-seg with a value of 0.825 and mAP50-95 is 0.645. In  his study, yolov8l-seg is the best value compared to other versions, because based on the highest mAP value on the valid mask of 0.825.
Exploring the Role of Deep Learning in Forecasting for Sustainable Development Goals: A Systematic Literature Review Utama, Agung Bella Putra; Wibawa, Aji Prasetya; Handayani, Anik Nur; Chuttur, Mohammad Yasser
International Journal of Robotics and Control Systems Vol 4, No 1 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i1.1328

Abstract

This paper aims to explore the relationship between deep learning and forecasting within the context of the Sustainable Development Goals (SDGs). The primary objective is to systematically review 38 articles published between 2019 and 2023, following PRISMA guidelines, to understand the current landscape of deep learning forecasting for SDGs. Using data from 2019-2023 allows capturing the latest developments in deep learning forecasting for Sustainable Development Goals (SDGs), while excluding data before 2019 and after 2023 is based on the desire to avoid including potentially less relevant or unpublished research and to maintain focus on the most current and contextually relevant literature. The methodological approach involves analyzing the application of deep learning methods for forecasting within various SDG fields and identifying trends, challenges, and opportunities. The literature review results reveal the popularity of LSTM models, challenges related to data availability, and the interconnected nature of SDGs. Additionally, the study demonstrates that deep learning models enhance forecast accuracy and computational performance, as measured by Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and R-squared (R2). The findings underscore the importance of advanced data preparation techniques and the integration of deep learning with SDGs to improve forecasting outcomes. The novelty of this research lies in its comprehensive overview of the current landscape and its valuable insights for researchers, policymakers, and stakeholders interested in advancing sustainable development goals through deep learning forecasting. Finally, the paper suggests future research directions, including exploring the potential of hybrid forecasting models and investigating the impact of emerging technologies on SDG forecasting methodologies. Innovative methods for imputing missing values in deep learning forecasting models could be further explored to enhance predictive accuracy and robustness.
Comparative Analysis of Fuzzy Logic Models for Depression Prediction: Python and LabVIEW Approaches Rismayanti, Nurul; Titaley, Gilberth Valentino; Handayani, Anik Nur
Indonesian Journal of Data and Science Vol. 5 No. 3 (2024): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v5i3.189

Abstract

Depression is one of the mental disorders with a significant impact on individuals' quality of life and productivity. The diagnostic process for depression, which typically relies on subjective assessment, often encounters challenges of uncertainty and variability in symptoms. This study aims to develop a fuzzy model for predicting depression levels based on five primary symptom variables: worthlessness, concentration, suicidal ideation, sleep disturbance, and hopelessness. The model is implemented on two platforms, Python and LabVIEW, to evaluate the accuracy and consistency of prediction results between these platforms. The analysis process begins with data preprocessing, input variable fuzzification, inference using 243 fuzzy rules, and defuzzification to generate a crisp output value classified into four depression levels: No Depression, Mild, Moderate, and Severe. The study results indicate a very small error margin between the two platforms, with error values below 0.01 in each trial. These findings suggest that both Python and LabVIEW can produce nearly identical and consistent predictions. This conclusion supports the effectiveness of fuzzy logic in addressing uncertainty in clinical data, especially for cases of depression with varying symptoms. Nonetheless, there are limitations related to the subjectivity in selecting membership functions and rules, as well as limitations in the number of variables used. Therefore, this study recommends expanding the developed fuzzy model with additional variables or integrating it with machine learning approaches to improve prediction accuracy. These findings are expected to serve as a foundation for the development of fuzzy-based systems in future mental health diagnostics.
Sugeno Fuzzy Personality Prediction System: An Approach to Overcoming Psychological Measurement Uncertainty Nadindra Dwi Ariyanta; Anik Nur Handayani
Indonesian Journal of Data and Science Vol. 5 No. 3 (2024): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v5i3.192

Abstract

Personality prediction is a significant field in psychological measurement, yet it faces challenges due to psychological data's ambiguous and uncertain nature. This study aims to develop a Sugeno-based fuzzy logic system for predicting personality types according to the Myers-Briggs Type Indicator (MBTI). The dataset includes synthetic personality data, incorporating age, introversion, sensing, thinking, and judging. The fuzzification process converts crisp input values into fuzzy variables, which are then processed using predefined fuzzy rules to generate personality predictions. The defuzzification step yields crisp outputs corresponding to MBTI types, demonstrating the system's ability to handle uncertainty and ambiguity effectively. Implementation and evaluation were conducted using Python and LabVIEW, revealing a satisfactory performance with a low error rate of 0.445. This study highlights the potential of fuzzy logic, particularly the Sugeno method, in enhancing accuracy and adaptability in personality prediction, contributing to applications in education, human resource management, and personalized digital services.
Convolutional Neural Network in Motion Detection for Physiotherapy Exercise Movement Laistulloh, Dika Fikri; Handayani, Anik Nur; Asmara, Rosa Andrie; Taw, Phillip
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p27-39

Abstract

Physiotherapy focuses on movement and optimal utilization of the patient's potential. Exercise Therapy is a physiotherapy procedure that specifically focuses exercises on active and passive movements. Cerebral Palsy (CP) patients are one of the sufferers of motor disorders of the upper extremities. Cerebral Palsy (CP) patients suffer from disorders in motor functions of the upper extremities. Physiotherapy Exercise Movement has 4 categories of movement exercises for the therapy of people with upper extremity body disorders: Elbow flexor strengthening in sitting using free weights, lifting an object up, reaching diagonally in sitting, and reaching from a low surface to a high surface. By taking 4 categories of motion movements in exercise therapy, data were taken using normal child subjects as standard movements, which then became a reference for CP child therapy. The limitations of therapy in physical care prompted researchers to investigate the use of image processing as input to Human Computer Interaction (HCI) in the process of motion detection-based therapy. In research using Deep learning as a classifier, namely using the CNN Model (Inception V3, Resnet152, and VGG16 architectural models). The results obtained by the CNN (Inception V3) model have the best performance with an accuracy percentage of 98%.
Co-Authors A.N. Afandi Abdul Rachman Manga' Abdullah Iskandar Syah Achmad Hamdan Achmad Safi’i Achmad Safi’i Adi Izhar Bin Che Ani Adi Prastowo, Nur Kodrad Adib Nur Sasongko Adim Firmansah Adipura, Laksamana Afandi, Farrel Candra Winata Agusta Rakhmat Taufani Ahmad Dardiri Aji Prasetya Wibawa Al-Jabbar, Habib Muhammad Amaliya, Sholikhatul Andrew Nafalski Anita Qotrun Nada Anusua Ghosh Ardiansyah, Lucky Arengga, Danang Ari Priharta Ari Priharta Arif Widodo, Baskoro Aripriharta - Ariyanta, Nadindra Dwi Arwani, Wafiq Nur Muhamamd Asfani, Khoirudin Atmaja, Muhammad Bayu Setya Wahyu Ayu Puspita Azhryl Assagaf Aziz, Faiz Syaikhoni Azizah, Desi Fatkhi Azizah, Devi Nur Bagaskoro, Muhammad Cahyo Baihaqi, Dimas Imam Baihaqi, Dimas Imam Baskoro Arif Widodo Bayu Prasetyo Bayu Prasetyo, Bayu Bin Che Ani, Adi Izhar Burhanuddin, Mohd Aboobaider Chalista Yulia Hazizah Chuttur, Mohammad Yasser Damanhuri, Nor Salwa Damayanti, Farradila Ayu Damayanti, Masyita Danang Arengga Danang Arengga Wibowo Dedes, Khen Devita Maulina Putri, Devita Maulina Dewi Aprilia Lintang Dewi, Ellya Kusna Aura Didik Dwi Prasetya Difa Hananta Firdaus Am Dika Fikri L Dimas Wahyu Wibowo Dityo Kreshna Argeshwara Dityo Kreshna Argeshwara Dolly Indra Dwi Prihanto Dyah Lestari Dyah Rosita Anggraeni Edinar Valiant Hawali Edwin Meinardi Trianto Eka Rahayu Setyaningsih Erwina Nurul Azizah F.ti Ayyu Sayyidul Laily Faiz Syaikhoni Aziz Fakhruddin, Dhiyaurrahman Faqih, Fauziah Nur Faqih, Kamil Faradhila Saffa Dhamira Farah Nisa’ Salsabila Fauzi, Juwita Annisa Fauzi, Rochmad Felix Andika Dwiyanto Ferina Ayu Pusparani Gianika Roman Sosa Graciello, Manuel Tanbica Gunawan Budi P Guyub Raharjo Gwo-Jiun Horng Haffas Zikri Ariyandi Hakkun Elmunsyah Halimahtus Mukminna, Halimahtus Handoko, Wahyu Tri Harits Ar Rasyid Harits Ar Rosyid Hartarto Junaedi Hary Suswanto Hasriani Hasriani, Hasriani Hermansyah Hermansyah Heru Herwanto Heru Wahyu Herwanto Hirashima, Tsukasa Hitipeuw, Emanuel Hosen, Moh I Made Wirawan Ida Ayu Putu Sri Widnyani Ihsan Al-Fikri Ira Kumalasari Irfan Ramadhani Irham Fadlika Jehad A. H. Hammad Jehad A.H. Hammad Jevri Tri Ardiansah Jevri Tri Ardiansah Joumil Aidil Saifuddin Kamil Faqih Kartika Kirana Kasmira Kasmira Katya Lindi Chandrika Khasanah, Elok Rosyidatul Khumairoh, Fidyah Nur Khurin Nabila Kinasih, Agnes Nola Sekar Kirom, M Kohei Arai Kohei Arai Kohei Arai Kohei Arai Korba, Petr Kurniawan, Wendy Cahya Kusumawardana, Arya Laili, Mery Nur Laily, F.ti Ayyu Sayyidul Laistulloh, Dika Fikri Lalu Ganda Rady Putra Langlang Gumilar Larasati, Jade Rosida Leonel Hernandez, Leonel Lestari , Widya Liang, Yeoh Wen Liang, Yoeh Wen lilis nurhayati M. Adib Nursasongko M. Kirom, M. M. Nuzuluddin M. Rodhi Faiz M. Rodhi Faiz Machumu, Paul Igunda Made Ayu Dusea Widyadara - Universitas Nusantara Kediri, Made Ayu Dusea Widyadara Mahamad, Abd Kadir Maqbullah, Afwatul Ming Foey Teng, Ming Foey Moh Zainul Falah Moh. Zainul Falah Mohammad Agung Rizki Mohammad Rizky Kurniawan Mohammad Yussril Asri Mohsen Samadi Mokh Sholihul Hadi Much. Arafat Al Mubarok Muchamad Wahyu Prasetyo Muhamad Arifin Muhamad Arifin, Muhamad Muhammad Arifin Muhammad Hafiizh Muhammad Holqi Rizki Azhari Muhammad Iqbal Akbar Muhammad Ridwan Muhammad Ulinnuha Musthofa Muhammad Younas Darvish Muhammad Zaky Rahmatsyah Muladi Mumtaazah, Muhammad Athar Mutiara, Titi Nadindra Dwi Ariyanta Nandang Mufti Nastiti Susetyo Fanani Putri Nastiti Susetyo Fanani Putri Nastiti Susetyo Fanany Putri Naufal Rizaldi Gunawan Ningrum, Gres Dyah Kusuma Nisa, Khoirotun Nizaar, Roub Norzanah Rosmin Norzanah Rosmin Nugraha, Agil Zaidan Nugraha, Youngga Rega Nunung Nurjanah Nur Halim Nur Rahma, Andika Bagus Nurus Sihab Aminudin Nuzuluddin, M. Osamu Fukuda Prasetya Widiharso Prasetya Widiharso Prasojo, Fadillah Pratama, Awanda Setya Sanfajar Pratama, Diaz Octa Pratama, Wahyu Styo Priharta, Ari Primadi, Wahyu Purnomo, Purnomo Putra Utama, Agung Bella Putri Galuh Ningtiaz Qomaria, Ulfa Rahman, Nukleon Jefri Nur Rahmat Samudra Anugrah, Muhammad Ramadhani, Lolita Ratnasari, Diah Ayu Resty Wulanningrum Reza Setyawan Rini Nur Hasanah Rismayanti, Nurul Romadlon, Muhammad Rizqi Rosa Andrie Asmara Rosa Andrie Asmara Rosyidin, Zulkham Umar Rusdha Aulia Salah Abdullah Khalil Abdulrahman Salsabila, Reni Fatrisna Saodah Omar Saputra, Ismed Eko Hadi Selly Handik Pratiwi Seno Isbiyantoro Setyaningsih, Eka Rahayu Setyawan, Wahyu Dwi Sevilla, Felix Rafael Segundo Siti Sendari Slamet Wahyudi Slamet Wibawanto Soraya Norma Mustika Srini Suciati, Reski Dwi Suryani, Ani Wilujeng Syaad Patmantara Syaichul Fitrian Akbar Taw, Phillip Teguh Andriyanto, Teguh Timothy John Pattiasina Titaley, Gilberth Valentino Tsukasa Hirashima Ulum, Khoirul Urnika Mudhifatul Jannah Utama, Agung Bella Putra Utomo Pujianto Utomo, Imam Tree Veithzal Rivai Zainal Wahyu Arbianda Yudha Pratama Wahyu Irianto Wahyu Primadi Wahyu Sakti Gunawan Irianto Wahyu Tri Handoko Wibawa, Aji Presetya Wibowo, Kusmayanto Hadi Wicaksana, Ardi Anugerah Widiharso, Prasetya Wijaya, Mikel Ega Wiryawan, Muhammad Zaki Yogi Dwi Mahandi Yosi Kristian Yu, Tony Yudha Islami Sulistya Yuliana Melita Pranoto Yuni Rahmawati Zaeni, Ilham Ari Elbaith Zufida Kharirotul Umma Zulkham Umar Rosyidin Zulkham Umar Rosyidin Zulkifli, Shamsul Aizam