p-Index From 2021 - 2026
12.512
P-Index
This Author published in this journals
All Journal Jurnal Ilmu Komputer dan Informasi Jurnal Buana Informatika Teknosains: Media Informasi Sains dan Teknologi Jurnal Teknologi Informasi dan Ilmu Komputer SIGMA: Jurnal Pendidikan Matematika AlphaMath: Journal of Mathematics Education JOIV : International Journal on Informatics Visualization Al Ishlah Jurnal Pendidikan Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JPM (Jurnal Pemberdayaan Masyarakat) Faktor Exacta Jurnal Penjaminan Mutu JITK (Jurnal Ilmu Pengetahuan dan Komputer) JTAM (Jurnal Teori dan Aplikasi Matematika) CARADDE: Jurnal Pengabdian Kepada Masyarakat Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) JURNAL MathEdu (Mathematic Education Journal) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) GERVASI: Jurnal Pengabdian kepada Masyarakat TELKA - Telekomunikasi, Elektronika, Komputasi dan Kontrol Techno Xplore : Jurnal Ilmu Komputer dan Teknologi Informasi Jurnal Sistem informasi dan informatika (SIMIKA) Reswara: Jurnal Pengabdian Kepada Masyarakat Jurnal Teknik Informatika (JUTIF) Unri Conference Series: Community Engagement Jurnal Dedikasi Jurnal Pengabdian Inovasi dan Teknologi Kepada Masyarakat Online Learning in Educational Research Seminar Nasional Pengabdian Kepada Masyarakat Catimore: Jurnal Pengabdian Kepada Masyarakat Jurnal Ilmiah Edutic : Pendidikan dan Informatika Internet of Things and Artificial Intelligence Journal Jurnal Penjaminan Mutu Indonesian Journal of Fundamental Sciences IPTEK: Jurnal Hasil Pengabdian kepada Masyarakat Teknovokasi : Jurnal Pengabdian Masyarakat Vokatek : Jurnal Pengabdian Masyarakat Information Technology Education Journal Pengabdian Jurnal Abdimas Journal of Embedded Systems, Security and Intelligent Systems Ininnawa: Jurnal Pengabdian Masyarakat Jurnal Kemitraan Responsif untuk Aksi Inovatif dan Pengabdian Masyarakat Jurnal Sipakatau Jurnal Ilmu Pengetahuan dan Teknologi Bagi Masyarakat Jurnal MediaTIK Mekongga: Jurnal Pengabdian Masyarakat Media Elektrik Malaqbiq : Jurnal Pengabdian kepada Masyarakat. Sasambo: Jurnal Abdimas (Journal of Community Service) JuTISI (Jurnal Teknik Informatika dan Sistem Informasi)
Claim Missing Document
Check
Articles

Klasifikasi Tingkat Kualitas Terung dengan Algoritma Backpropagation Berbasis Fitur Warna dan Tekstur R, Muh Raflyawan; Arifky, Reza; Tenriajeng, Andi Afrah; Kaswar, Andi Baso; Andayani, Dyah Darma; Azis, Putri Alysia
Jurnal Teknik Informatika dan Sistem Informasi Vol 11 No 2 (2025): JuTISI
Publisher : Maranatha University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28932/jutisi.v11i2.10655

Abstract

Manual quality assessment of eggplant is often inconsistent, takes a long time, and is prone to errors due to worker fatigue. This research aims to develop an automated system based on digital image processing to assess eggplant quality efficiently and accurately. The stages begin with image capture using a mobile phone device designed to ensure stable lighting and uniform background. The acquired image is then processed through segmentation using the Otsu thresholding method as well as morphological operations to separate the main object from the background. Color and texture features are extracted through Gray-Level Co-occurrence Matrix (GLCM) analysis and RGB, HSV, and LAB color spaces. Training data amounting to 90% of the total dataset was used to train an artificial neural network-based classification model with a backpropagation algorithm, while the remaining 10% was used for testing. Experimental results showed that the combination of LAB, RGB, HSV, and texture features gave the best results, with a testing accuracy of 86%, recall of 85%, and precision of 92%. This model is very effective in detecting poor quality eggplants with 100% accuracy. This system can support the application of technology in the horticultural sector.
KLASIFIKASI BUAH KELAPA BERDASARKAN WARNA KULIT UNTUK MENGIDENTIFIKASI KETEBALAN DAGING PADA BERBAGAI TINGKAT KEMATANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN (JST) Ahmad Khan, Sardar Faroq; Dina Salam, Fitria Nur; Aulia, Magfirah; Kaswar, Andi Baso; Jariah S.Intam, Rezki Nurul; Wahid, Abdul
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 4: Agustus 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.124

Abstract

Kelapa (Cocos nucifera L.) adalah bagian dari suku aren-arenan atau Arecaceae dari marga cocos. Kelapa adalah tanaman yang sering ditemui dan kaya akan manfaat bagi umat manusia, mulai dari daun, batang pohon dan buah kelapanya. Pedagang tradisional dapat menggunakan suara yang dihasilkan dari ketukan tangan untuk mengetahui tingkat kematangan buah kelapa. Namun, dengan cara manual ini ada kemungkinan kesalahan dalam proses pengklasifikasianya. Maka dari itu, pada penelitian ini diusulkan judul Klasifikasi Buah Kelapa Berdasarkan Ketebalan Dagingnya Pada Berbagai Tingkat Kematangan Menggunakan Jaringan Saraf Tiruan (JST). Metode penelitian untuk pengklasifikasian terdiri atas 7 tahap yaitu tahap akuisisi citra, preprocessing, segmentasi, operasi morfologi, ekstraksi fitur, klasifikasi, dan evaluasi. Harapan dari metode yang digunakan untuk memberikan solusi khusunya kepada para petani dan pedagang dalam mengklasifikasi atau menyortir buah kelapa untuk mengetahui kualitas dagingnya dengan bantuan teknologi pengolahan citra digital. Dengan menggunakan 300 dataset citra yang dibagi menjadi 240 citra latih dan 60 citra uji, yang menghasilkan tingkat akurasi 97,91% pada citra latih dan 96,66% pada citra uji. Dengan waktu komputasi 0,31 detik per citra pada citra latih dan 0,21 detik per citra pada citra uji. Sehingga hasil dari pembahasan pada penelitian ini, pengklasifikasian buah kelapa menggunakan metode Jaringan Saraf Tiruan (JST) dengan memanfaatkan fitur warna dapat berjalan dan menghasilkan hasil yang dapat digolongkan baik.Abstract Coconut (Cocos nucifera L.) is part of the Arecaceae tribe of the cocos genus. Coconut is a plant that is often encountered and is rich in benefits for mankind, starting from the leaves, tree trunk and coconut fruit. Traditional traders can use the sound produced by hand tapping to determine the ripeness of the coconut fruit. However, with this manual method there is a possibility of error in the classification process. Therefore, this research proposes the title Classification of Coconut Fruit Based on the Thickness of the Flesh at Various Levels of Maturity Using Artificial Neural Networks (JST). The research method for classification consists of 7 stages, namely image acquisition, preprocessing, segmentation, morphological operations, feature extraction, classification, and evaluation. The hope of the method used to provide solutions especially to farmers and traders in classifying or sorting coconut fruit to determine the quality of the meat with the help of digital image processing technology. By using 300 image datasets divided into 240 training images and 60 test images, which resulted in an accuracy rate of 97.91% on the training image and 96.66% on the test image. With a computation time of 0.31 seconds per image on the training image and 0.21 seconds per image on the test image. So that the results of the discussion in this study, the classification of coconut fruit using the Artificial Neural Network (JST) method by utilizing color features can run and produce results that can be classified as good.
Hyperellipsoid Cluster Merging using Hierarchical Analysis of Hyperellipsoid Cluster for Image Segmentation Kaswar, Andi Baso; Nurjannah, Nurjannah; Djawad, Yasser Abd
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.2815

Abstract

Segmentation is one of the critical stages in digital image processing and computer vision. However, conventional clustering-based segmentation methods, such as K-means and Fuzzy C-means (FCM), are still unable to accurately segment images whose pixels form hyperellipsoid clusters in the feature space. In addition, previous clustering methods based on Mahalanobis distance measurement require a long computational time and still have the potential to fall into local optima. Therefore, in this paper, we propose a new method for segmenting images whose pixels form hyperellipsoid clusters in the feature space, utilizing hyperellipsoid clusters merging through hierarchical analysis of hyperellipsoid clusters. The proposed method comprises eight main steps: histogram extraction, peak and valley identification, elimination of low peaks and valleys, peak combination for centroid initialization, initialization of cluster pixel members, elimination of ineffective clusters, hyperellipsoid cluster merging, and finalization of cluster members. This paper presents a novel approach to segmenting color images by employing an initial centroid discovery process and cluster analysis that considers cluster covariance for cluster merging. Based on the tests conducted using various image characteristics, the proposed method can provide 97.42% accuracy, 98.02% precision, 97.15% recall, 2.58 misclassification error, 97.54 F1-score, 95.29% intersection over union, 97.52% dice coefficient, and 15.37 seconds of computation time. The test results are superior to those of conventional methods, such as K-means and FCM. Based on these results, it can be concluded that the proposed method can effectively segment images with high accuracy. The proposed method can serve as an alternative approach to image segmentation.
KEEFEKTIFAN COMPUTATIONAL THINKING DALAM MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA Kaswar, Andi Baso; Nurjannah, Nurjannah
SIGMA: JURNAL PENDIDIKAN MATEMATIKA Vol. 16 No. 1: Juni 2024
Publisher : Universitas Muhammadiyah Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26618/sigma.v16i1.14574

Abstract

Computational Thinking merupakan kemampuan dasar berpikir untuk siswa serta guru dimana kemampuan tersebut dapat memberikan pola pikir yang baru untuk memperoleh pemecahan masalah serta untuk mengembangkan peluang. Tujuan dari penelitian ini adalah untuk mengetahui efektifitas computational thinking terhadap kemampuan pemecahan masalah siswa. Penelitian ini merupakan penelitian kuantitatif dengan pretest postest control grup desain. Instrumen dalam penelitian ini adalah tes kemampuan pemecahan masalah yang diperoleh berdasarkan soal-soal computational thinking yang dikembangkan oleh Bebras. Teknik analisis data dilakukan dengan uji paired sample t test. Berdasarkan hasil analisis data dengan paired sample t-test diperoleh nilai probabilitas 0,000. Karena nilai probabilitas lebih kecil dibanding  maka dapat dikatakan bahwa computational thinking efektif digunakan untuk meningkatkan kemampuan pemecahan masalah matematika siswa. Dengan demikian, kemampuan computational thinking tidak hanya meningkatkan kemampuan pemecahan masalah siswa, tetapi juga mempersiapkan mereka untuk menghadapi tantangan dalam berbagai bidang studi dan situasi kehidupan nyata yang memerlukan pemikiran kritis, kreatif, dan terstruktur.
CLASSIFICATION OF TOMATO QUALITY BASED ON COLOR FEATURES AND SKIN CHARACTERISTICS USING IMAGE PROCESSING BASED ARTIFICIAL NEURAL NETWORK Agung, Andi Sadri; SR, Amin Farid Dirgantara; Hersyam, Muh Syachrul; Kaswar, Andi Baso; Andayani, Dyah Darma
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 5 (2023): JUTIF Volume 4, Number 5, October 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.5.730

Abstract

Tomato (Solanum Lycopersicum) is a plantation commodity in Indonesia with a production rate that tends to increase every year. With a high economic value, maintenance is important so that the quality is getting better. The problems that arise at this time are related to the determination of the quality of tomatoes which is still done manually and depends on humans so classification using technology is considered important to be developed. Previously there has been researching related to the classification of tomatoes. However, accuracy and computation time still need to be improved. Therefore, in this research, a method of classification of tomatoes was carried out using Artificial Neural Network (ANN) Backpropagation algorithm by utilizing color features and skin characteristics based on image processing. This research followed several stages, from acquiring 300 tomato images with 3 class levels to the classification process using ANN Backpropagation. Several training scenarios and tests were conducted to select the feature combined with the highest accuracy and fastest computation time. The combination of 3 best features used is RGB color feature with shape and texture features as skin characteristic parameters. Based on training results with 210 training images, an accuracy of 100% was obtained with a computation time of 2.58 seconds per image. While test results with 90 test images, accuracy reaches 95.5% with a computing time of 1.39 seconds per image. So it can be concluded that the method used has gone well in classifying tomato image quality based on color features and skin characteristics.
MATURITY CLASSIFICATION SYSTEM OF TOMATO BASED ON RGB COLOR FEATURES USING BACKPROPAGATION ARTIFICIAL NEURAL NETWORK METHOD Massie, Gary Jeremi; Pratama, Azir Zuldani; Sakira, Tiara Putri; Kaswar, Andi Baso; Andayani, Dyah Darma
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.732

Abstract

Determining the ripeness level of tomatoes, for now, is still done manually (conventional), and in general, determining the ripeness of tomatoes using the manual method often gets inconsistent results due to differences in everyone's perception so in determining ripe or not ripe tomatoes to be not very accurate. There have been various previous studies that have been conducted, especially in terms of classifying maturity levels, but from these studies, the level of accuracy achieved is relatively low. Therefore, the researcher proposes research on Tomato Fruit Maturity Classification System Based on RGB Color Features Using the Backpropagation Neural Network Method. This research consists of the image acquisition stage, the preprocessing stage, the image segmentation stage including performing morphological operations, the RGB feature extraction stage, and the last stage is conducting Image Classification using Backpropagation Neural Networks. From the results of the training phase, the resulting computational time is 87,735 seconds with an overall accuracy rate of 99.04%. And based on the results of the testing phase, the architecture of the backpropagation neural network that has been built can accurately classify the ripeness level of tomatoes, from a total of 90 test images, with an accuracy of 98.88% obtained and a more efficient computational time of 30.390 seconds. This can help farmers in harvesting tomatoes.
CLASSIFICATION OF THE LEVEL OF SUGAR CONTENT IN PAPAYA FRUIT BASED ON COLOR FEATURES USING ARTIFICIAL NEURAL NETWORK Nurfitri, Andi Aisyah; Kaparang, Adam Indra; Hidayat, Muh. Taufik; Kaswar, Andi Baso; Andayani, Dyah Darma
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 6 (2023): JUTIF Volume 4, Number 6, Desember 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.6.733

Abstract

Papaya (Carica papaya L) is consumed by many people because it is beneficial for health. Along with increasing consumption or enthusiasts of papaya, the quality of papaya needs to be considered. One of the determining factors of the quality of papaya is its physical characteristics, which can be seen from its color, shape, and texture. Papaya of good quality has a delicious and sweet taste. The sweet taste of papaya is certainly influenced by the sugar content contained in it. However, to determine the sugar content in papaya is only done by human assessment based on its physical characteristics, this assessment is often less accurate. With a system that can determine the sugar content in papaya, it will make it easier for farmers to sort papaya fruit. Therefore, in this study, it is proposed to classify the level of sugar content in papaya based on color features using an Artificial Neural Network. The proposed method consists of 5 stages, namely, image acquisition, preprocessing, segmentation with the Otsu method, morphological operations, and classification with artificial neural networks. The number of papaya datasets used is 300 images which are divided into 3 classes, low class, medium class, and tal class. Based on the results of the tests that have been carried out, an accuracy of 92.85% is obtained for the training data, and for the test data, an accuracy of 100% is obtained. These results indicate that the proposed method can classify the level of sugar content in papaya fruit accurately.
CLASSIFICATION OF RICE QUALITY LEVELS BASED ON COLOR AND SHAPE FEATURES USING ARTIFICIAL NEURAL NETWORK BASED ON DIGITAL IMAGE PROCESSING Asnidar, Asnidar; Perdana, Am Akbar Mabrur; Ilham, Muhammad Ryan; Kaswar, Andi Baso; Andayani, Dyah Darma
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 6 (2023): JUTIF Volume 4, Number 6, Desember 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.6.734

Abstract

Rice is the staple food of most Indonesians. In identifying the quality of rice, it can be seen from physical characteristics such as the color and shape of rice, because these characteristics can make an object can be identified properly and clearly. In general, what is done in determining the quality of rice by looking at its color and shape. But usually the human eye in identifying objects is sometimes less accurate which is influenced by several factors, such as age. So, several studies were conducted that tried to solve the problem by using digital image processing. However, the accuracy results obtained are still not accurate, because the datasets used in the previous study were relatively small, namely around 80 images, although the average level of accuracy obtained was quite high, but the number of datasets used was very small so that the level of accuracy was still inaccurate. Therefore, in this study, it is proposed that the title of classification of rice quality levels using JST based on digital image processing which divides rice into 3 classifications, namely, good, good enough, and not good where in this study using 330 digital images to produce a more accurate level of accuracy. In this study, there are several stages, namely, image retrieval, preprocessing, segmentation, morphological, feature extraction, and classification using artificial neural networks. Based on the research conducted, training accuracy was produced with an average accuracy of 98,75% while the test accuracy was produced with an average accuracy of 98,89%.
Carrot Quality Classification Based on Color and Texture Features Using Artificial Neural Network Method Idris, Muh Gimnastiar; Fauzi, A. Arfan; Syasikirani. N, Adelia; Kaswar, Andi Baso
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.1401

Abstract

Carrots are popular vegetable plants that are usually consumed by the public. Determination of quality using the visual of human eye is considered to have many shortcomings. In previous studies, the carrot classification process had been carried out using a certain method. However, the level of accuracy resulting from several previous studies is still lacking because the processes and methods used are considered to be inaccurate, so innovation is needed by using processes and methods that are more precise to obtain classification results with a better level of accuracy. Therefore, this research proposes a classification of carrot quality based on color and texture features using an artificial neural network method. The proposed method consists of 6 stages, namely image acquisition, preprocessing, segmentation, morphological operations, feature extraction, and classification using artificial neural networks. In this study, quality is divided into three classes, namely feasible, less feasible, and not feasible using 300 carrot image datasets. The results obtained in the testing process obtained an accuracy of 100%, a misclassification error of 0%, and a computation time of up to 55 seconds. Based on the test results it can be seen that the proposed method can classify the quality of carrots accurately.
CLASSIFICATION OF SUGAR LEVELS IN BANANA FRUIT BASED ON COLOR FEATURES USING DIGITAL IMAGE PROCESSING-BASED ARTIFICIAL NEURAL NETWORKS S, Mushawwir; Burhan, Rafli Ananta; Yuliarni, Tarisa; Kaswar, Andi Baso; Andayani, Dyah Darma
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 4 (2024): JUTIF Volume 5, Number 4, August 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.4.1420

Abstract

Bananas are a fruit that has many benefits for human health, because bananas contain a source of vitamins, minerals and carbohydrates. Bananas are a fruit that is often consumed by Indonesian people because of their sweet taste. With this sweet taste, of course bananas have quite high sugar levels, so diabetes sufferers must pay attention to this when choosing bananas. The level of sugar content in bananas can be distinguished by looking at the ripeness of the fruit. To differentiate between them, of course, we use human vision, but human observation also has weaknesses and errors can occur in the process, whether due to lack of lighting, visual impairment, or age. Therefore, this study proposes a classification of the level of sugar content in bananas in the RGB color space using artificial neural networks (ANN). The proposed method consists of 6 stages, namely image acquisition, preprocessing, segmentation, morphological operations, RGB feature extraction, and classification stage. In this study, 300 samples of banana fruit images were used. 210 datasets will be used for training and 90 datasets for testing. The dataset is divided into 3 classes, namely low sugar content, medium sugar content, and high sugar content. Based on the test results that have been carried out, the accuracy of the classification results is 97.78%, the misclassification is 2.22%, and the computing time is 375 seconds. These results show that the proposed method can accurately classify the level of sugar content in bananas.
Co-Authors A. Farha Adella A. Muhammad Idkhan A. Mutahharah A. Mutahharah Mutahharah A.Farha Adella Abd. Rahman Patta Abdul Muis Mappalotteng Abdul Wahid Adiba, Fhatiah Afdhaliyah, Mukhlishah Afyan, Nurbaitul Aglaia, Alifya Nuraisyar Agung, Andi Sadri Agus Zainal Arifin Agus Zainal Arifin Agustinus Suria Darme Ahmad Adzan Lain Ahmad Fudhail  Majid Ahmad Khan, Sardar Faroq Ahmad Mustofa Hadi Ahmad Mustofa Hadi Ainun Zahra Adistia Akbar, Trisakti Aksa, Muhammad Al Imran Alfian Firlansyah Ananta Dwi Prayoga Alwy Andi Ahmad Taufiq Andi Akram Nur Risal Andi Alamsyah Rivai Andi Nurul Izzah Andi Rosman N Andi Tenriola Anggy Heriyanti Anggy Heriyanti Anny Yuniarti Aqsha, Ismail Aras, Muh Riski Farukhi Arifky, Reza Arinanda Alviansyah Arliandy, Arliandy Arsyad, Meisaraswaty Arya Yudhi Wijaya Arya Yudhi Wijaya Aryadi Nurfalaq Ashadi, Ninik Rahayu Asnidar Asnidar Asrofi, Muhammad Ghufran Astuti, Ninik Aswar Aswar Atthariq, Muhammad Aulia, Magfirah Awalia, Nur Ayu Futri Azis, Putri Alysia Azis, Salsabila Bantun, Suharsono Bugdady, Andi Jaedil Bukhari Naufal Nur A.G Burhan, Rafli Ananta Chairati, Chairati Cyahrani Wulan Purnama Cyahrani Wulan Purnama Rasyid Darma Andayani, Dyah Darme, Agustinus Suria Della Fadhilatunisa Dewi Fatmarani Surianto Dhanendra, Fadhil Dina Salam, Fitria Nur Dini, Juliano Nufiansyach Dirawan, Gufran Darma Edy, Marwan Ramdhany Elva Amalia Elva Amalia Eman Wahyudi Kasim Eriyani, Nindy Sri Fachriansyah, Zaky Farid, Muhammad Miftah Farros Taufiqurrahman Fathahillah Fathahillah Fauzi, A. Arfan Fazli Arif Fhatiah Adiba Fhatiah Adiba Fhatiah Adiba Hafidz Muhtar Hanum Zalsabilah Idham Hartanto Tantriawan Heriyanti, Anggy Herman Hermansyah Hermansyah Hersyam, Muh Syachrul Hidayat, Muh. Taufik Ibnu Fikrie Syahputra Idkhan, A. Muhammad Idkhan, Andi Muhammad Idris, Muh Gimnastiar Ihlasul Amal Ikra Ain Fahwa Ikra Ain Fahwa Ilham, Muh Ilham, Muhammad Ryan Indri Pratiwi Ramadhani Intam, Reski Nurul Jariah S Irwansyah Suwahyu Ishak Israwati Hamsar Iwan Suhardi Jamaluddin, Bunga Mawar Jamila Jamila Jamila Jariah S.Intam, Rezki Nurul Jasruddin Daud Malago Jayanti Yusmah Sari Jumadi Mabe Parenreng Jusrawati Jusrawati Jusrawati Kaparang, Adam Indra Kaswar, A Baso Kurnia Prima Putra Kurnia Wahyu Prima Labusab Labusab Labusab Labusab, Labusab Lapendy, Jessica Crisfin Lavicza, Zsolt M. Miftach Fakhri Makmur, Haerunnisya Marwan Eka Ramdhany Marwan Ramdhany Edy Massie, Gary Jeremi Maulana Muhammad Mawaddah, Arini Ulfa Muammar Muammar Muh Aldhy Fatahillah Muh Devan Fahresi Muh Fuad Zahran Firman Muh Omar Hassan ST Muh. Dirgafa Anugra Rais Muh. Dirgafa Anugrah Rais Muh. Fardika Pratama Putra Muh. Fauzan Arifuddin Muh. Rais Muh. Rasul D Muhammad Agung Muhammad Agung Muhammad Akbar Muhammad Akil, Muhammad Muhammad Fajar B Muhammad Naim Muhammad Nur Yusri Maulidin Yusuf Muhammad Nur Yusri Maulidin Yusuf Muhammad Yahya Muhiddin Palennari Muhira Muhira Muhtar, Hafidz Mukhtar Mukhtar Mulia, Musda Rida Muliaty Yantahin Musdar, Devi Miftahul Jannah Mustari Lamada Mutahharah, A Naim, Muhammad Nasrullah, Asmaul Husnah NFH, Alifya NIRMALA, PUTRI Nirsal Novianti, Andi Fitri Nur Anny S. Taufieq Nur Fadillah Bustamin Nur Inayah Yusuf Nurfalaq, Aryadi Nurfitri, Andi Aisyah Nurhidayat Nurhidayat Nurhikma Nurhikma Nurhikma Nurjannah Nurjannah Nurjannah Nurjannah Nurjannah Nurjannah Nurjannah Nurjannah Nurul Amanda Pratiwi Hasbullah Nurul Isra Humaira B Nurul Istiqamah Qalbi Nurul Izzah Dwi Nurul Izzah Dwi Nurdinah Patongai, Dian Dwi Putri Ulan Sari Perdana, Am Akbar Mabrur Pratama, Azir Zuldani R, Muh Raflyawan R, Ranir Aftar Ranggareksa, Andi Ranir Atfar R Rapa, Wiwi Resky, Andi Aulia Cahyana Riana T. Mangesa Riana T. Mangesa Ridwan Daud Mahande Ridwansyah Rivai, Andi Tenri Ola Rosidah RR. Ella Evrita Hestiandari Rusli, Risvan S, Mushawwir Sahribulan Sahribulan Saiful Bahri Musa Sakira, Tiara Putri Sam, Muh Hadal Ali Sanatang Saparuddin Saparuddin Saparuddin Saparuddin Saprina Mamase Sartika Sari Sartika Sari Sasmita Sasmita Sasmita SATRIYAS ILYAS Silvia Andriani Soeharto Soeharto SR, Amin Farid Dirgantara Sri Rahayu St. Fatmah Hiola Suharsono Bantun Suhartono, Suhartono Supria Supria Surianto, Dewi Fatmawati Susiana Sari Syamsuddin Syasikirani. N, Adelia Tenriajeng, Andi Afrah Tenriola, Andi Tri Afirianto, Tri Tsabita Syalza Billa Tsabita Syalza Billa Irawan Umar, Nur Fadhilah Wahda Arfiana AR WAHYUDI Wanda Hamidah Wardani, Ayu Tri Wiwi Rapa WULANDARI Yasser Abd Djawad Yuliarni, Tarisa Yusuf, Zulfatni Zulfikar, Muh. Ihsan