Articles
Tuning of PID Controller Parameters with Genetic Algorithm Method on DC Motor
Eka Widya Suseno;
Alfian Ma'arif
International Journal of Robotics and Control Systems Vol 1, No 1 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i1.249
Proportional Integral Derivative (PID) controllers are used in general to control a system, for example a DC motor system. The difficulty of using the controller is parameter tuning, because the tuning parameters still use the trial and error method to find the PID parameter constants, namely Proportional Gain (KP), Integral Gain (KI) and Derivative Gain (KD). In this case, the genetic algorithm method is used which can give better results in each iteration. Genetic algorithms are one of the smart methods inspired by the process of natural selection, the process that causes biological evolution, this concept is applied to tuning PID parameters. This research uses the Matlab simulation method and applies the simulation results to the DC motor hardware using the Arduino Uno. The genetic algorithm method gives a system that has a better steady time and a smaller maximum spike than the Trial and Error method. The test process produced the two best data with an overshoot value = 2, settling time = 13.5 and rise time of 2.7872 and the PID parameter value for mutation of 1 was KP = 3.7500; KI = 1.3184 and KD = 0.2051. Then the value of the best PID parameter on Crossover is 0.4, which is KP = 4.2090; KI = 1.2012 and KD = 0.2539 with an overshoot value = 2, settling time = 18 and rise time = 2.6462.
Linkage Detection of Features that Cause Stroke using Feyn Qlattice Machine Learning Model
Purwono Purwono;
Alfian Ma'arif;
Iis Setiawan Mangku Negara;
Wahyu Rahmaniar;
Jihad Rahmawan
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 7, No 3 (2021): December
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.26555/jiteki.v7i3.22237
Stroke is a disease caused by brain tissue damage because of blockage in the cerebrovascular system that disrupts body sensory and motoric systems Stroke disease is one of the highest death cause in the world. Data collection from Electronic Health Records (EHR) is increasing and has been included in the health service big data. It can be processed and analyzed using machine learning to determine the risk group of stroke disease. Machine learning can be used as a predictor of stroke causes, while the predictor clarifies the influence of each cause factor of the disease. Our contribution in this research is to evaluate Feyn Qlattice machine learning models to detect the influence of stroke disease's main cause features. We attempt to obtain a correlation between features of the stroke disease, especially on the gender as a feature, whether any other features can influence the gender feature. This research utilizes 4908 data of the disease predictor using the Feyn Qlattice model. The result implies that gender highly impacts age and hypertension on stroke disease causes. Autorun in Feyn Qlattice model was run with ten epochs, resulting in 17596 test models at 57s. Query string parameter that was focused on age and hypertension features resulted in 1245 models at 4s. An increase of accuracy was found in training metrics from 0.723 to 0.732 and in testing metrics from 0.695 to 0.708. Evaluation results showed that the model is reasonably good as a predictor of stroke disease, indicated with blue lines of AUC in training and testing metrics close to ROC's left side peak curve.
Optimization of Renewable Energy Consumption in Charging Electric Vehicles Using Intelligent Algorithms
Reza Alayi;
Alfian Ma'arif;
Yaser Ebazadeh;
Ferydon Gharadaghi;
Farnaz Jahanbin;
Nima Shafaghatian
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.18196/jrc.v3i2.13118
Today, due to the considerable growth of the power/electricity industry, the high distance between low and high loads, and also economic crisis plagued most of the countries in the world, the operation of power plants has been transformed into a vital issue. Also, increasing use of energy and lack of accountability of conventional resources in response to supply the need has created many problems, including a decrease of fossil fuel sources, adverse environmental impacts, and increase of Greenhouse Gases (GHGs) all around the world. The concerns induced by this problem have caused the technologies consistent with an environment such as Electric Vehicles (EVs) to attract more and more attention. According to the capability of two-side exchange of power in these vehicles, if a significant number of them are connected to a net under management and intelligent control of an institution consistently, they can behave such a virtual small power plant with high start-up speed and without any cost.
Dynamic Performance Analysis of a Five-Phase PMSM Drive Using Model Reference Adaptive System and Enhanced Sliding Mode Observer
Mahmoud A. Mossa;
Hamdi Echeikh;
Alfian Ma’arif
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.18196/jrc.v3i3.14632
This paper aims to evaluate the dynamic performance of a five-phase PMSM drive using two different observers: sliding mode (SMO) and model reference adaptive system (MRAS). The design of the vector control for the drive is firstly introduced in details to visualize the proper selection of speed and current controllers’ gains, then the construction of the two observers are presented. The stability check for the two observers are also presented and analyzed, and finally the evaluation results are presented to visualize the features of each sensorless technique and identify the advantages and shortages as well. The obtained results reveal that the de-signed SMO exhibits better performance and enhanced robustness compared with the MRAS under different operating conditions. This fact is approved through the obtained results considering a mismatch in the values of stator resistance and stator inductance as well. Large deviation in the values of estimated speed and rotor position are observed under MRAS, and this is also accompanied with high speed and torque oscillations.
Particle Swarm Optimization (PSO) Tuning of PID Control on DC Motor
Eka Suci Rahayu;
Alfian Ma'arif;
Abdullah Çakan
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v2i2.476
The use of DC motors is now common because of its advantages and has become an important necessity in helping human activities. Generally, motor control is designed with PID control. The main problem that is often discussed in PID is parameter tuning, namely determining the value of the Kp, Ki, and Kd parameters in order to obtain optimal system performance. In this study, one method for tuning PID parameters on a DC motor will be used, namely the Particle Swarm Optimization (PSO) method. Parameter optimization using the PSO method has stable results compared to other methods. The results of tuning the PID controller parameters using the PSO method on the MATLAB Simulink obtained optimal results where the value of Kp = 8.9099, K = 2.1469, and Kd = 0.31952 with the value of rise time of 0.0740, settling time of 0.1361 and overshoot of 0. Then the results of hardware testing by entering the PID value in the Arduino IDE software produce a stable motor speed response where Kp = 1.4551, Ki= 1.3079, and Kd = 0.80271 with a rise time value of 4.3296, settling time of 7.3333 and overshoot of 1.
Blockchain Technology
Purwono Purwono;
Alfian Ma'arif;
Wahyu Rahmaniar;
Qazi Mazhar ul Haq;
Dimas Herjuno;
Muchammad Naseer
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 8, No 2 (2022): June
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.26555/jiteki.v8i2.24327
Blockchain came because of the occurrence of incredulity to single authorities by introducing the concept of network decentralization and data distribution saved in a ledger. Decentralization is used to validate discrepancies in the majority of data. The consensus mechanism collectively maintains the consistency of the ledger. A blockchain is a set of blocks containing transaction data interconnected to each other using the concept of cryptography. A mining process is an effort to add new blocks to the blockchain. The mining computer carries out the process after passing several complex mathematical problems. The fastest miner is rewarded with crypto coins. Some consensus mechanisms commonly used in blockchain are proof of work, proof of stake, practical byzantine fault tolerance, and proof of elapsed time. Blockchain network is designed and implemented in such a way that it can guarantee the security of its data, is easy to be audited, is robust to denial of service and majority attacks, and is private and confidential. The application of blockchain is not limited to finance systems; it can also be applied in health, education, supply chain, and state democracy systems.
Design of gas concentration measurement and monitoring system for biogas power plant
Iswanto Iswanto;
Alfian Ma’arif;
Bilah Kebenaran;
Prisma Megantoro
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 2: May 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijeecs.v22.i2.pp726-732
Biogas is a gas obtained from the breakdown of organic matter (such as animal waste, human waste, and plants) by methanogenic bacteria in an oxygen-free (anaerobic) state. The biogas produced mainly consists of 50-70% methane, 30-40% carbon dioxide, and other gases in small amounts. The gas produced has a different composition depending on the type of animal that produces it. It is challenging to obtain biogas concentration data because the monitoring equipment is currently minimal. Therefore, this research discusses how to make a monitoring system for biogas reactors. Sensors are installed in the digester tank and storage tank. The installed sensors are the MQ-4 sensor to detect methane gas (CH4), MG-811 sensor to detect carbon dioxide (CO2) gas, MQ-136 sensor to detect sulfide acid gas (H2S), and Thermocouple Type-K to detect temperature. The sensor will send a signal to the control unit in Arduino Mega 2560, then processed and displayed on the liquid crystal display (LCD). The sensor calculation results' accuracy is not much different from the reference based on the sensor readings. The sensor deviation standard is below 5.0, indicating that the sensor is in precision. The sensor's linearity of MQ-4 is 0.7%, the MG-811 is 0.17%, the MQ-136 is 0.29%, and the Type-K Thermocouple is 1.19%. The installed sensor can be used to monitor gas concentration and temperature in a biogas reactor.
Sistem Keamanan Sepeda Motor (SIKESEM) Menggunakan Kamera dan GPS Berbasis Internet of Things
Vicky Fajar Setiawan;
Alfian Ma'arif
JTEV (Jurnal Teknik Elektro dan Vokasional) Vol 8, No 1 (2022): JTEV (Jurnal Teknik Elektro dan Vokasional)
Publisher : Universitas Negeri Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (784.567 KB)
|
DOI: 10.24036/jtev.v8i1.113696
Kebutuhan manusia akan sandang, pangan, dan papan semakin meningkat. Peningkatan kebutuhan yang tidak diimbangi dengan kemampuan untuk memenuhi kebutuhannya mengakibatkan bertambahnya tindak kriminalitas. Pengamanan pengendara sepeda motor, pengontrolan sepeda motor mencakup klakson, kelistrikan dan lokasi menggunakan ponsel berbasis Intenert of things (IoT) sangat penting untuk mengatasi pencurian kendaraan bermotor. Pengambilan gambar, digunakan webcam. Tingkat kualitas gambar yang baik apabila sinar cahaya sedikit terhahalang oleh pepohonan. Relay untuk mengontrol kelistrikan dan klakson sepeda motor. Keakurasian relay adalah 100% untuk menjalankan fungsinya. Penentuan titik longitude dan latitude, digunakan modul GPS NEO – 6M. Keakurasian terhadapat titik sebenarnya antara 2 – 10 meter. Telegram melalui bot telegram digunakan sebagai apalikasi untuk melakukan komunikasi dengan sistem. Tingkat kecepatan sistem membalas antara 1 – 5 detik. Proses terlama untuk melakukan komunikasi adalah pengambilan gambar yang memerlukan waktu 5 detik.
Alat Deteksi Detak Jantung Pada Atlet Maraton Menggunakan Raspberry Pi 3B
Muhammad Irfan Pure;
Alfian Ma'arif;
Anton Yudhana
JTEV (Jurnal Teknik Elektro dan Vokasional) Vol 7, No 2 (2021): JTEV (Jurnal Teknik Elektro dan Vokasional)
Publisher : Universitas Negeri Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (575.992 KB)
|
DOI: 10.24036/jtev.v7i2.113526
Jantung adalah organ vital manusia yang berperan penting dalam kehidupan seseorang. Jantung berfungsi untuk memompa darah keseluruh tubuh melalui pembuluh darah. Pada ajang lari maraton, pelari terlatih detak jantungnya dapat naik hingga 170-180 bpm, sementara detak jantung pelari yang kurang terlatih dapat meningkat ke angka 200 bpm. Hal ini dikarenakan jantung memompa darah yang mengandung oksigen ke seluruh tubuh lebih cepat saat tubuh membutuhkan banyak oksigen untuk menghasilkan energi. Jantung yang bekerja melebihi batas normalnya akan menyebabkan sakit jantung yang berakibat fatal hingga dapat menyebabkan kematian. Pada penelitian ini penulis membuat alat deteksi detak jantung pada atlet maraton untuk dijadikan sebagai indikasi dalam mengukur kondisi kesehatannya. Sistem yang dirancang menggunakan Raspberry Pi 3B sebagai pemrosesannya dan sensor MAX30102 yang bekerja menggunakan prinsip Photoplethysmography yaitu metode non-invasive untuk mengukur detak jantung dan saturasi oksigen dengan cara mendeteksi volume aliran darah di dalam nadi yang berada sangat dekat dengan kulit.
Pengendali Kecepatan Sudut Motor DC Menggunakan Kontrol PID dan Tuning Ziegler Nichols
Mila Diah Ika Putri;
Alfian Ma'arif;
Riky Dwi Puriyanto
Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto) Vol 23, No 1 (2022): Techno Volume 23 NO.1 April 2022
Publisher : Universitas Muhammadiyah Purwokerto
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.30595/techno.v23i1.10773
Penelitian ini menerapkan pengendali Proporsional Integral Derivatif (PID) untuk mengendalikan kecepatan sudut motor DC dan tuning Ziegler Nichols. Penelitian tidak hanya terbatas simulasi menggunakan Matlab namun juga implementasi ke perangkat keras Arduino. Pengendali PID banyak digunakan karena pengendali ini sederhana dan mudah dalam pengaplikasiannya. Namun terdapat kekurangan dalam menentukan nilai parameter kontroler PID atau disebut dengan Tuning. Metode Tuning merupakan cara untuk mencari konstanta parameter PID, yaitu Proporsional Gain (Kp), Integral Gain (Ki), dan Derivatif Gain (Kd). Umumnya parameter-parameter konstanta tersebut masih ditentukan dengan cara manual yaitu trial and error (coba-coba). Berdasarkan hasil pengujian, metode Ziegler Nichols dapat memberikan respon yang lebih baik dibandingkan dengan metode trial and error. Respon pengendali PID dengan metode trial and error cenderung tidak stabil sementara dengan metode Ziegler Nichols respon sistem lebih stabil. Nilai pengendali PID terbaik yang didapatkan dari penelitian ini yaitu Kp=8,23712, Ki=1,65072, and Kd=0,41268. Hasil pengujian lain menunjukkan bahwa nilai Kp, Ki, dan Kd terbaik yang dihasilkan pada simulai Matlab tidak semuanya memberikan keluaran yang baik pada hardware. Sebaliknya nilai pengendali PID yang mungkin kurang bagus pada simulasi Matlab bisa memberikan keluaran yang baik pada hardware. Hal tersebut bisa terjadi karena model transfer function yang digunakan pada simulasi Matlab tidak sama persis motor DC pada hardware.