p-Index From 2021 - 2026
8.638
P-Index
This Author published in this journals
All Journal DIKSI Media Statistika MATEMATIKA Prosiding Seminar Biologi Jurnal Gaussian Jurnal Statistika Universitas Muhammadiyah Semarang Jurnal Pendidikan Dasar Nusantara Majalah Kulit, Karet, dan Plastik Jurnal Spektra Bioeksperimen: Jurnal Penelitian Biologi Pedagogia: Jurnal Pendidikan E-Dimas: Jurnal Pengabdian kepada Masyarakat Catharsis JURNAL KEPEMIMPINAN DAN PENGURUSAN SEKOLAH Briliant: Jurnal Riset dan Konseptual Jurnal Penelitian Pendidikan IPA (JPPIPA) Indonesian Journal of Applied Statistics Seminar Nasional Variansi (Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika) BIOEDUSCIENCE Jurnal Pendidikan Terbuka Dan Jarak Jauh Journal of Education and Instruction (JOEAI) Jurnal Basicedu Indonesian Journal on Learning and Advanced Education (IJOLAE) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) JOURNAL OF ENGLISH FOR ACADEMIC Inovasi: Jurnal Ilmiah Ilmu Manajemen JIKAP PGSD: Jurnal Ilmiah Ilmu Kependidikan International Journal for Educational and Vocational Studies JURNAL PENDIDIKAN MIPA Dinasti International Journal of Education Management and Social Science Jurnal Paedagogy Jurnal Graha Pengabdian Journal of Early Childhood Education (JECE) Indonesian Journal of Instructional Media and Model Epistema EDUTECH : Jurnal Inovasi Pendidikan Berbantuan Teknologi JURNAL LENTERA AKUNTANSI Abdi Psikonomi Journal of Education Research Jurnal Ilmiah Mahasiswa Manajemen, Bisnis dan Akuntansi Journal of Advanced Sciences and Mathematics Education Innovation Business Management and Accounting Journal Jurnal Basicedu Prosiding University Research Colloquium JURNAL ABDIMAS PLJ JIM: Jurnal Ilmiah Mahasiswa Pendidikan Sejarah Jurnal Edukasi Pengabdian Masyarakat: EDUABDIMAS SERIBU SUNGAI: Journal of Research and Community Service Jurnal Manajemen dan Administrasi Antartika Arty: Jurnal Seni Rupa Pinisi Journal Pendidikan Guru Sekolah Dasar Jurnal Seni Tari Jurnal Teknik Informatika dan Desain Komunikasi Visual
Claim Missing Document
Check
Articles

Found 48 Documents
Search
Journal : Jurnal Gaussian

KAJIAN RELIABILITAS DAN AVAILABILITAS PADA SISTEM KOMPONEN PARALEL Pradewi, Riana Ayu Andam; Sudarno, Sudarno; Suparti, Suparti
Jurnal Gaussian Vol 3, No 2 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (428.85 KB) | DOI: 10.14710/j.gauss.v3i2.5911

Abstract

Reliability and availability are a measure of item or system performance. System reliability and system availability obtained from the calculation of reliability and availability of the components in the system. Reliability of components in the system are affected by the time to failure (TTF). While the availability of components in the system are affected by the mean time to failure (MTTF) and mean time to repair (MTTR). Given observed time data of lifting machines consists of trolley drive and hoist in parallel, is measured its system availability. Parameter values determined using simple linear regression and maximum likelihood estimation. Furthermore observation time test data distributions in the Kolmogorov-Smirnov test. Trolley drive has exponential distribution for failure time data with  while repair time data is normal distribution with  and . Hoist has weibull failure time data with  and  while lognormal repair time data has  and . The higer value of ti,system reliability value will be close to 0 and the engine can survive until the specified time. Due to MTTF is 4000 hours and MTTR is 45,70 hours, trolley drive’s availability is 98,87%. Availability of hoist is 98,84% from MTTF is 5821,61 hours and MTTR is 67,80 hours. The parallel system availability is 99,986% means the probability of system is in the state of functioning at given time is 99,986%.
KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN SIX SIGMA Murti, Victoria Dwi; Sudarno, Sudarno; Suparti, Suparti
Jurnal Gaussian Vol 1, No 1 (2012): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (675.946 KB) | DOI: 10.14710/j.gauss.v1i1.917

Abstract

Analisis data tahan hidup biasanya digunakan untuk mengetahui ketahanan hidup suatu produk dalam bidang industri. Data waktu hidup dapat berupa data tersensor tipe I, tipe II dan tipe III. Dalam penelitian ini digunakan data tersensor tipe I yang merupakan suatu data waktu kematian atau kegagalan dimana semua unit uji n masuk pada waktu yang sama dan percobaan dihentikan sampai waktu tertentu. Salah satu distribusi yang dapat digunakan untuk menggambarkan waktu hidup adalah distribusi eksponensial dengan parameter l. Parameter l diestimasi dengan menggunakan metode Maximum Likelihood Estimation (MLE). Untuk mengetahui hubungan linear data kegagalan dengan intensitas kegagalan produk digunakan regresi linier. Selain itu, untuk memperkecil tingkat kegagalan yaitu dengan memprediksi kegagalannya menggunakan tingkat sigma. Nilai tingkat sigma bisa didapatkan dari DPMO (Defect Per Million Opportunity) yang berhubungan dengan MTTF (Mean Time To Failure) atau fungsi Reliabilitas. Jika nilai DPMO semakin kecil maka nilai tingkat sigma semakin besar.
PENDEKATAN SERVQUAL-LEAN SIX SIGMA MENGGUNAKAN DIAGRAM KONTROL T2 HOTELLING UNTUK MENINGKATKAN KUALITAS PELAYANAN PENDIDIKAN (Studi Kasus di Jurusan Statistika Universitas Diponegoro) Darwati, Lulus; Mustafid, Mustafid; Suparti, Suparti
Jurnal Gaussian Vol 4, No 2 (2015): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (339.505 KB) | DOI: 10.14710/j.gauss.v4i2.8578

Abstract

Measurement the service of quality has an important role in improving and evaluating the performance of a service process. Measuring the service of quality is not as easy as measuring the goods quality, because the assessment service is subjective. Therefore, ServQual dimension is used as a tool to measure the performance of service from the perspective of service’s users. Lean Six Sigma method is used to improve the performance of the services of quality that focused on the reduction of variations and the increasing of the speed of the process through the elimination of waste that occur in the flowing process. This research aims to implement the integration of ServQual and Lean Six Sigma method by controlling the process using Hotelling T2 control charts on the improvement of the quality of education services. The performance of the education services process overall is indicated by the value of the capabilities and the level of the sigma. The capability value amount 0.8407 and the level of sigma amount 2.748 indicates that the waste percentage in the process of educational services is about 10.6%. The waste of dominant on improving the quality of education services such as lecturer competencies, the status of departement accreditation, the speed in the administrative services, and the refinement of laboratory facilities especially the improvement on the computer facilities.Keywords : ServQual, Hotelling T2 control charts, Process Capability, Lean Six Sigma
ANALISIS ANTRIAN PASIEN INSTALASI RAWAT JALAN POLIKLINIK LANTAI 1 DAN 2 RSUD CENGKARENG, JAKARTA Nadeak, Sanitoria; Sugito, Sugito; Suparti, Suparti
Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (705.218 KB) | DOI: 10.14710/j.gauss.v5i1.11059

Abstract

The queue process associates with the arrival of the costumers of a service facility, waiting in a queue line when all waiters are busy, and finally left the facility after being served. Queuing phenomena can be found in public service facilities, such as in District General Hospital (RSUD) Cengkareng. The length of the registration procedure, consultation services for physicians, and waiting time for the pharmacy services, can influence the satisfaction of the patients of Outpatient Installation of RSUD Cengkareng. Therefore, it is necessary to have an appropriate queue model to get an effective service, balanced and efficient, that can reduce the long queues and waiting time. From the analysis, the queue model for the registration of the Workers Social Security Agency (BPJS) patient is (M /M/6):(GD/∞/∞) with the number of server is 6 counters and for the non BPJS patients is (M/M/2):(GD/∞/∞) with the number of server is 2 counters. The queue model for the psychiatrist clinic and anesthetic is (M/M/1):(GD/∞/∞) with the number of server is 1 counter. The queue model for the other Polyclinic is (M/M/c):(GD/∞/∞) with the number of server depends on the clinic itself.Keywords: Queue, Outpatient Installation, District General Hospital (RSUD) Cengkareng
PEMODELAN PERSENTASE PENDUDUK MISKIN DI KABUPATEN DAN KOTA DI JAWA TENGAH DENGAN PENDEKATAN MIXED GEOGRAPHICALLY WEIGHTED REGRESSION Hakim, Arief Rachman; Yasin, Hasbi; Suparti, Suparti
Jurnal Gaussian Vol 3, No 4 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (593.43 KB) | DOI: 10.14710/j.gauss.v3i4.8068

Abstract

Regression analysis is a statistical analysis that models the relationship between the response variable and the predictor variable. Geographically Weighted Regression (GWR) is the development of linear regression with the added factor of the geographical location where the response variable is taken, so that the resulting parameters will be local. Mixed Geographically Weighted Regression (MGWR) has a basic concept that is a combination of a linear regression model and GWR, by modeling variables that are local and which are global variables. Methods for estimating the model parameters MGWR no different from the GWR using Weighted Least Square (WLS). Selection of the optimum bandwidth using the Cross Validation (CV). Application models MGWR the percentage of poor people in the district and town in Central Java showed MGWR models that different significantly from the global regression model. As well as models generated for each area will be different from each other. Based on the Akaike Information Criterion (AIC) between the global regression model, the GWR and MGWR models, it is known that MGWR models with Gaussian kernel weighting function is the best model is used to analyze the percentage of poor in the counties and cities in Central Java because it has the smallest AIC value.Keywords: Akaike Information Criterion, Cross Validation, Kernel Gaussian function, Mixed Geographically Weighted  Regression, Weighted Least Square.
PEMODELAN REGRESI SPLINE MENGGUNAKAN METODE PENALIZED SPLINE PADA DATA LONGITUDINAL (Studi Kasus: Harga Penutupan Saham LQ45 Sektor Keuangan dengan Kurs USD terhadap Rupiah Periode Januari 2011-Januari 2016) Zia, Nabila Ghaida; Suparti, Suparti; Safitri, Diah
Jurnal Gaussian Vol 6, No 2 (2017): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (782.546 KB) | DOI: 10.14710/j.gauss.v6i2.16951

Abstract

Nonparametric regression is one type of regression analysis used when parametric regression assumptions are not fulfilled. Nonparametric regression is used when the curve does not form a specific pattern of connections. One of the approach by using nonparametric regression is spline regression with penalized spline method. Spline regression using penalized spline method was applied to three closing stock prices on the financial sector such as Bank BRI, BCA and Mandiri with the data of USD currency rate in rupiah. Closing price of stock data and the USD currency rate in rupiah were taken from January 2011 up to January 2016 for in sample data and from February 2016 up to December 2016 for out sample data. The data taken is called longitudinal data which is observing some subjects on specific period. Best spline regression model with penalized spline method is derived from the minimum value of GCV, the number of optimal knots and the optimal orde. Best spline regression model with penalized spline method for longitudinal data was obtained on the orde of 1, the 59 knots, the smoothing parameter with λ value of 1 and the GCV value of 889,797. The R2 value of in sample data was 99,292%, best model performance for in sample data. MAPE value of out sample data is  1,057%, the best accurate performance model.Keyword: stock price, USD currency rate, longitudinal data, spline regression, penalized spline
PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG PADA KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK TERHADAP PERTUMBUHAN TANAMAN JAGUNG Asismarta, Asismarta; Suparti, Suparti; Sudarno, Sudarno
Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (527.881 KB) | DOI: 10.14710/j.gauss.v5i1.10931

Abstract

Balanced Incomplete Block Design (BIBD) when all treatment comparisons are equally important, the treatment combinations used in each block should be selected in a balanced manner so that any pair of treatments occur together the same number of times as any other pair. The data used is the result a simulation of the generation of data using program packages MINITAB 16 that normal distributing with a  and  varying Based on the study of cases the combined effect fertilizer nanosil and fertilizer NPK on the growth of corn plant, tested on 6 treatment and 10 block with every treatment repeated as many as 5 times and each block unfilled 3 treatment. Assuming model that is residual the normal distribution, independence and variant homogeneous. When third this assumption be accepted then followed the effect treatment (adjusted) against an observed, when having effect and undergone a further Tukey to know treat which that differ significantly. Of treatment to be adjusted obtained with combination 25% fertilizer nanosil + 75% fertilizer NPK who gives the average the biggest contributor to the growth of plants corn.Keywords : BIBD, Tuckey test, normality, independence, equal variance
ANALISIS PENGARUH JUMLAH UANG BEREDAR DAN NILAI TUKAR RUPIAH TERHADAP INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN PEMODELAN REGRESI SEMIPARAMETRIK KERNEL Nanda, Deden Aditya; Suparti, Suparti; Hoyyi, Abdul
Jurnal Gaussian Vol 5, No 3 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (810.316 KB) | DOI: 10.14710/j.gauss.v5i3.14693

Abstract

Stocks are one of the many forms of investment chosen by the investor. Investors can use Composite Stock Price Index (CSPI) as one of the indicators that show the movement of stock prices. CSPI fluctuates every day, where one of the causes are macroeconomic factors. Therefore needs to be done a proper analysis to model the CSPI and the factors that influence it. This study is using 1 parametric component variable (money supply) and 1 nonparametric component variable (exchange rate the rupiah against the dollar). So that proper modeling is semiparametric regression. Nonparametric component will be using kernel regression method by selecting the optimal bandwidth using a generalized cross validation method (GCV). This study uses monthly data. Data in sample is used as much as 68 data that is taken from Januari 2010 to August 2015, meanwhile out sample that is used as much as 6 data from September 2015 to February 2016. Based on the results of the analysis that has been done, the best kernel semiparametric regression model is using gaussian kernel function with bandwidth is around 47.94 and GCV=34675.27047. Determination coefficient value is 0.9781. Evaluation result of the model for value of Mean Absolute Percentage Error (MAPE) data out sample is around 4,036%, which indicates that the model is very accurate.Keywords: Composite Stock Price Index (CSPI), Semiparametric regression, Kernel, GCV
KLASIFIKASI RUMAH LAYAK HUNI DI KABUPATEN BREBES DENGAN MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION DAN NAIVE BAYES Simatupang, Fitri Juniaty; Wuryandari, Triastuti; Suparti, Suparti
Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (659.428 KB) | DOI: 10.14710/j.gauss.v5i1.11033

Abstract

House is a very basic need for everyone besides food and clothing. House can reflect the level of welfare and the level of health of its inhabitants. The advisability of a house as a good shelter can be seen from the structure and facilities of buildings.  This research aims to analyze the classification of livable housing and determine the criteria of houses uninhabitable. The statistical method used are the Learning Vector Quantization and Naive Bayes. The data used in this final project are data of Survei Sosial Ekonomi Nasional (Susenas) Kor Keterangan Perumahan in 2014 Quarter 1 district of Kabupaten Brebes. In this research, the data divided into training data and testing data with the proportion that gives the highest accurate is 95% for training data and 5% for testing data. Training data will be used to generate the model and pattern formation, while testing data used to evaluate how accurate the model or pattern formed in classifying data through confusion tables. The results of analysis showed that the Learning Vector Quantization method gives 71,43% of classification accuracy, while Naive Bayes method gives 95,24% of classification accuracy. The Naive Bayes method has better classification accuracy than the Learning Vector Quantization method.Keywords: House, Learning Vector Quantization, Naive Bayes, Classification
PREDIKSI TINGGI PASANG AIR LAUT DI KOTA SEMARANG DENGAN MENGGUNAKAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA) DAN DETEKSI OUTLIER Sa'adah, Alfi Faridatus; Ispriyanti, Dwi; Suparti, Suparti
Jurnal Gaussian Vol 3, No 3 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (581.532 KB) | DOI: 10.14710/j.gauss.v3i3.6437

Abstract

Semarang as the capital of the province of Central Java is a central transportation  that has a high intensity and strategic activities. However, this area has a tidal disaster threat level is high enough. Tidal flood is a phenomenon where sea water entered the land area when the sea level has getting tides. In the future impact of tidal inundation in Semarang city is predicted to be greaterso that has needed the forecasting of high tide. The data pairs tend to experience seasonal monthly and contained outliers that may affect the suitability of the model so that Seasonal Autoregressive Integrated Moving Average (SARIMA) and outlier detection is used for forecasting method. For outlier detection, there are four types of outliers are additive outlier (AO), innovational outlier (IO), level shift (LS) and temporary change (TC). The study was conducted on the data of tide in Semarang period January 2004 - December 2012 based on the average high tide occurs when the maximum. The results of research showed that the model SARIMA with 7 outliers result predictions with high accuracy because it has a smaller AIC value is 649,1083 compared to the SARIMA models without outlier is 705,6404.
Co-Authors A. Sulaksono, A. A.A. Ketut Agung Cahyawan W Aan Sofyan Abdul Hoyyi Adhytia, Rizkyhimawan Afandi, Adam Pri Agus Cahyono Agus Prasetya Agus Rusgiyono Agus Triyono Akbari, Windusiwi Asih Alan Prahutama Alanindra Saputra Alvita Rachma Devi Amanda Devi Paramitha Ambarwati Aminah Asngad Ananda, Refisa Angelia, Yuni Anggun Ella Indriyani Anik Rahmawati, Anik Anjarwati, Ani Any Setyaningsih, Any Arianti Suhartini Arieanti, Dian Dinarafika Arief Rachman Hakim Arief Rachman Hakim Arnisa Melani Kahar Ash Shiddiq, Fanchas Asismarta Asismarta, Asismarta Ayu Annisa Gharini AYU LESTARI Azizah, Adilla Nur Badriyah, Ratu Bahtiar Ilham Triyunanto Brillianing Pratiwi Budi Warsito Budiarti, Arivia Ayu C Yuwono Sumasto, C Yuwono Deden Aditya Nanda, Deden Aditya Dewi, Anggra Lita Sandra Dewi, P A R Dhany Efita Sari Dhea Dewanti Di Asih I Maruddani Diah Safitri Dwi Ispriyanti Dwi Sambada Dwi Wahyuningsih, Dwi Dwikoranto Eka Anisha Eka Destiyani Eka Fadilah Eka Wijayanti Eko Sugiyanto Ermanuri, Ermanuri Erna Sulistianingsih Ernawati, Devi Ernik Yuliana Esti Pratiwi Evelyna, Feby Evi Oktaviana, Desy Fadilah, Eka Fitri Juniaty Simatupang, Fitri Juniaty Gina Wangsih Hamid, Lukman Hanifa Adityarahma Hanifah Nur Aini Happy Suci Puspitasari Hasbi Yasin Haya, Lovina Rizki I Made Sulandra Ihdayani Banun Afa Immawati Ainun Habibah Intaniasari, Yossinta Iut Tri Utami Iut Triutami Izzudin Khalid, Izzudin Janaka, Janaka Jefferio Gusti Putratama Jody Hendrian Juwanda, Farikhin Karimawati, Nurul Kartika, Aninda Ayu Karwanto, Karwanto Khaerul Anam Khansa Amalia Fitroh Khansa, I H Khoirunnisa, Siti Intan Khulaifiyah, Khulaifiyah Lamik Nabil Mu'affa Lanjari , Restu Lina Agustina Lintangesukmanjaya, R T Lismiyati Marfuah, Lismiyati Lisnayati, Lisnayati Lulu Maulatus Saidah Lulus Darwati, Lulus M. Noris Maman Suryaman MASLIHATIN, LINA Meiliawati Aniska Milawati Milawati Moch. Abdul Mukid Mokhamad Nurjam'i MUHAMAD SHOLEH Muhammad Sulaiman Muhammad Taufan Muhtadi Muhtadi Muqorobin, Masculine Muhammad Mustafid Mustafid Mustaji Mustaji, Mustaji Mustofa, Achmad Nastiti, Tri Dyah Netriwati Nia Istiana Noer Rachma, Gustyas Zella Nunuk Hariyati Nurhayati, Rizky Nurina Salma Alfiyyah Nurlia, Titim Nurmanita, Tiara Sevi Nurul Fitria Fitria Rizani Ovie Auliya’atul Faizah Paula Meilina Dwi Hapsari Peter Rajagukguk Pranata, Sepbrie Mulia Bingah Prasetyo, Mario Aditya Prastowo, Srihandono Budi Prastya, Agus Puspita Kartikasari Putra, D A Putri Agustina Rahma Dewi Hartati Rahman Kosasih, Fauzy Rahman, Syair Dafiq Faizur Rahmawati Patta, Rahmawati Rahyu Setiani Rambat Rambat, Rambat Renti Oktaria, Renti Retnowati, Lina Riana Ayu Andam Pradewi Richy Priyambodo Rismawati Rismawati Rita Rahmawati RIZKYHIMAWAN, ADHYTIA Rohayati, Menik Rudi Saputro Setyo Purnomo Rukun Santoso Sa'adah, Alfi Faridatus Sadjati, Ida Malati Safitri, Wardani Ana Salma Farah Aliyah Salsa Bella, Shella Salsabila Rizkia Gusman Sania Anisa Farah Sanitoria Nadeak, Sanitoria Septian Hendra Wijaya Setiawan, Fuad Alfaridzi Setyoko Prismanu Ramadhan Setyowati, Titik Sholihah, Zaimatu Silvia Elsa Suryana Silvia Nur Rinjani Singgih Subiyantoro Sirojuddin, Muhammad Siska Andriyani Siti Fadhilla Femadiyanti Sofiana Sofiana Sola Fide Sri Budiasih, Sri Sri Sumiyati Sri Wahyuni Sri Wahyuningrum Sudargo Sudarno Sudarno Sudarno Sudarno Sugito - Sugito Sugito Sunardi Sunardi Supeno Supratmi, Nunung Supriyanto, Rudy Suranto Suranto Surasmi, W A Surasmi, Wuwuh Asrining Susilo, Mas Bayu Sutrisno, Supadi Bambang Syafruddin Syafruddin Syafruddin*, Syafruddin syah, naziah Syazwina Aufa Syiva Multi Fani T. Mart, T. Tarno Tarno Tarno Tarno Tatik Widiharih Tiani Wahyu Utami Triastuti Rahayu Triastuti Wuryandari Tyas Estiningrum Ul Haq, Hasna Faridah Dhiya Vera Handayani Victoria Dwi Murti WAHYU SUKARTININGSIH Wahyu Tiara Rosaamalia Widari Widari, Widari Wiradharma, Gunawan Yasir Sidiq YATIM RIYANTO Yon Haryono Yunianika, Ika Tri Yuningsih Yuningsih Yupitasari, Yupitasari Yusak, Suharno Zein, Secondta Habib Syarifah Zia, Nabila Ghaida Zubaidah, Lailia Zuhri, Thoha Syaifudin