p-Index From 2020 - 2025
8.647
P-Index
This Author published in this journals
All Journal Jurnal Informatika dan Teknik Elektro Terapan Sistemasi: Jurnal Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Faktor Exacta Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Jurnal Eksplora Informatika JURNAL INSTEK (Informatika Sains dan Teknologi) Jiko (Jurnal Informatika dan komputer) Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Digital Zone: Jurnal Teknologi Informasi dan Komunikasi JURIKOM (Jurnal Riset Komputer) KOMPUTIKA - Jurnal Sistem Komputer JURNAL MANAJEMEN BISNIS JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) TELKA - Telekomunikasi, Elektronika, Komputasi dan Kontrol Jurnal Informatika Global Jambura Journal of Electrical and Electronics Engineering Klasikal: Journal of Education, Language Teaching and Science Jurnal Teknik Informatika (JUTIF) Mattawang: Jurnal Pengabdian Masyarakat PENGABDI: Jurnal Hasil Pengabdian Masyarakat JUSTIN (Jurnal Sistem dan Teknologi Informasi) Brilliance: Research of Artificial Intelligence Jurnal Nasional Teknik Elektro dan Teknologi Informasi Online Learning in Educational Research Paradigma Teknovokasi : Jurnal Pengabdian Masyarakat Vokatek : Jurnal Pengabdian Masyarakat Seminar Nasional Hasil Penelitian LP2M UNM Jurnal Pengabdian Masyarakat Journal of Embedded Systems, Security and Intelligent Systems Ininnawa: Jurnal Pengabdian Masyarakat Journal of Security, Computer, Information, Embedded, Network and Intelligence System Jurnal Kemitraan Responsif untuk Aksi Inovatif dan Pengabdian Masyarakat Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Jurnal Pengabdian Masyarakat dan Riset Pendidikan Jurnal Sipakatau: Inovasi Pengabdian Masyarakat Journal of Progressive Information, Security, Computer and Embedded System Paramacitra : Jurnal Pengabdian Masyarakat Jurnal MediaTIK SISFOTENIKA
Claim Missing Document
Check
Articles

Enhancing K-Means Clustering for Journal Articles using TF-IDF and LDA Feature Extraction Surianto, Dewi Fatmarani; Surianto, Dewi Fatmawati
Brilliance: Research of Artificial Intelligence Vol. 4 No. 2 (2024): Brilliance: Research of Artificial Intelligence, Article Research November 2024
Publisher : Yayasan Cita Cendekiawan Al Khwarizmi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/brilliance.v4i2.5547

Abstract

Clustering is a fundamental technique in data analysis, particularly in unsupervised learning, to group data with similar characteristics. However, the effectiveness of the K-Means algorithm in text clustering heavily depends on proper feature extraction. This study proposes an enhanced feature extraction approach by integrating Term Frequency-Inverse Document Frequency (TF-IDF) and Latent Dirichlet Allocation (LDA) to improve clustering performance on journal article datasets. The dataset consists of 427 journal article abstracts collected from Google Scholar. The preprocessing steps include tokenization, stopword removal, and TF-IDF vectorization, followed by topic extraction using LDA, which serves as input features for the K-Means clustering algorithm. The optimal number of clusters is determined using the Silhouette Score, with the best result obtained at k=9, achieving a score of 0.6806. The practical implications of this study include improved accuracy in academic document clustering, with applications in journal recommendation systems, digital library indexing, and research trend analysis. The results demonstrate that the combination of TF-IDF and LDA produces more informative text representations, significantly enhancing clustering quality. This study contributes to text mining and data science by proposing a systematic preprocessing framework for document clustering. Future research could explore its application to full-text articles, hierarchical clustering, or deep learning-based models to further improve clustering performance.
PCA and t-SNE Implementation for KNN Hypertension Classification Visualization Cahyana Resky, Andi Aulia; Lapendy, Jessica Crisfin; Nur Risal, Andi Akram; Surianto, Dewi Fatmarani; Wahid, Abdul
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 1 (2025): February 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i1.6208

Abstract

Hypertension is a condition that, if allowed to increase, can significantly injure internal organs due to high blood pressure. The objective of this study is to use the K-Nearest Neighbor (KNN) algorithm along with PCA and t-SNE to accurately identify four categories of Hypertension, Normal, Hypertension, Stage 1 Hypertension, and Stage 2 Hypertension. After establishing the scope, a dataset consisting of 7,794 samples was sourced from Labuang Baji Regional General Hospital, Makassar, and contained age, weight, and systolic and diastolic blood pressure parameters. The class distribution is Normal (36.3%), Hypertension (43.12%), Stage 1 Hypertension (8.29%), and Stage 2 Hypertension (12.31%). Experimental results show that the KNN base model achieved 99% accuracy, KNN with PCA reached 100%, and KNN with t-SNE attained 99%. Cross-validation was used to evaluate model generalization, yielding accuracies of 91%, 94%, and 91%, respectively. These findings suggest that KNN, particularly when integrated with t-SNE, is highly effective in visualizing and classifying non-linear data structures. Furthermore, this study demonstrates that incorporating dimensionality reduction techniques enhances the interpretability of classified hypertension data, which is crucial for informed decision-making by mental health committees.
Word2Vec Approaches in Classifying Schizophrenia Through Speech Pattern Azis, Putri Alysia; Andi, Tenriola; Surianto, Dewi Fatmarani; Budiarti, Nur Azizah Eka; Risal, Andi Akram Nur; Zulhajji, Zulhajji
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 2 (2025): April 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i2.6323

Abstract

Schizophrenia is a chronic brain disorder characterized by symptoms such as delusions, hallucinations, and disorganized speech, posing significant challenges for accurate diagnosis. This research investigates an innovative Natural Language Processing (NLP) framework for classifying the speech patterns of schizophrenia patients using Word2Vec, with the aim of determining whether there are significant differences between the two features. The dataset comprises speech transcriptions from 121 schizophrenia patients and 121 non-schizophrenia participants collected through structured interviews. This study compares two Word2Vec architectures, Continuous Bag-of-Words (CBOW) and Skip-Gram (SG), to determine their effectiveness in classifying schizophrenia speech patterns. The results indicate that the SG architecture, with hyperparameter tuning, produces more detailed word representations, particularly for low-frequency words. This approach yields more accurate classification results, achieving an F1-score of 93.81%. These results emphasize the effectiveness of the framework in handling structured and abstract linguistic patterns. By utilizing the advantages of both static and contextual embedding, this approach offers significant potential for clinical applications, providing a reliable tool for improving schizophrenia diagnosis through automated speech analysis.
Digital Literacy Training and Introduction to Artificial Intelligence Ethics to Realize Digital Literate Teachers: Pelatihan Literasi Digital dan Pengenalan Etika Kecerdasan Buatan untuk Mewujudkan Guru Melek Digital Fakhri, M. Miftach; Isma, Andika; Hidayat M., Wahyu; Ahmar, Ansari Saleh; Surianto, Dewi Fatmarani
Mattawang: Jurnal Pengabdian Masyarakat Vol. 5 No. 1 (2024)
Publisher : Yayasan Ahmar Cendekia Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/454RI.mattawang2603

Abstract

The problems identified are the level of digital literacy that needs to be improved and the need for an understanding of AI ethics among teachers, which can hinder the education process in the digital era. The purpose of this service is to improve the digital competence and understanding of AI ethics of teachers, so that they can be more effective in teaching and guiding students towards responsible use of technology. Through an Action Research approach, the teachers were directly involved in the process of improving and developing their skills in digital literacy and scientific article writing. The methods used in this training involved lectures, discussions, and practical exercises using various interactive media such as Quizziz, videos, infographics, and educational games. The training was attended by 35 teachers on 4 March 2024. The results of the training showed a significant increase in participants' knowledge and skills related to digital literacy and AI ethics. In addition, there was a positive shift in attitudes towards the use of digital technology. The implication of the training results is the improvement of education quality in the participating schools, as more digitally literate teachers can be more effective in integrating technology in the learning process. In addition, these teachers can act as agents of change in society, helping to build a community of smart and responsible digital technology users. Abstrak Masalah yang diidentifikasi adalah tingkat literasi digital yang perlu ditingkatkan dan perlunya pemahaman etika AI di kalangan guru, yang dapat menghambat proses pendidikan di era digital. Tujuan Pengabdian ini adalah untuk meningkatkan kompetensi digital dan pemahaman etika AI para guru, sehingga mereka dapat lebih efektif dalam mengajar dan membimbing siswa menuju penggunaan teknologi yang bertanggung jawab. Melalui pendekatan Action Research, para guru terlibat secara langsung dalam proses peningkatan dan pengembangan kemampuan mereka dalam literasi digital dan penulisan artikel ilmiah. Metode yang digunakan dalam pelatihan ini melibatkan ceramah, diskusi, dan latihan praktis dengan menggunakan berbagai media interaktif seperti Quizziz, video, infografis, dan permainan edukatif. Pelatihan ini diikuti oleh 35 guru pada tanggal 4 Maret 2024. Hasil dari pelatihan menunjukkan peningkatan signifikan dalam pengetahuan dan keterampilan peserta terkait literasi digital dan etika AI. Selain itu, terdapat pergeseran sikap yang positif terhadap penggunaan teknologi digital. Implikasi dari hasil pelatihan ini adalah peningkatan kualitas pendidikan di sekolah-sekolah peserta, karena guru yang lebih melek digital dapat lebih efektif dalam mengintegrasikan teknologi dalam proses pembelajaran. Selain itu, guru-guru ini dapat berperan sebagai agen perubahan dalam masyarakat, membantu membangun komunitas pengguna teknologi digital yang cerdas dan bertanggung jawab.
Beyond Advice: Training Mentors in Ethics, Boundaries, and Trustworthy Mentoring Surianto, Dewi Fatmarani; Nasrullah, Asmaul Husnah; Hasnining, Ayu; Adiba, Fhatiah; Wardani, Ayu Tri
Jurnal Sipakatau: Inovasi Pengabdian Masyarakat Volume 2 Issue 4 June 2025: Jurnal Sipakatau
Publisher : PT. Lontara Digitech Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61220/jsipakatau.v2i4.2525

Abstract

The Community Service Program aims to improve ethical competency among student mentors through a structured training program that focuses on five key areas: confidentiality, ethical communication, communication style, professional boundaries, and respecting mentee diversity. A total of 31 mentors participated in pre- and post-test assessments, allowing for a measurable analysis of knowledge development. The training was delivered online using Zoom and included interactive discussions, scenario analysis, and self-reflection sessions. Results showed significant improvements in all five indicators, particularly in understanding ethical communication (from 32.3% to 77.4% selecting the highest score), and appropriate communication style (from 41.9% to 80.6%). Even dimensions with high baseline scores, such as confidentiality (74.2%), experienced positive growth. The findings confirm that the training successfully improved participants’ ethical sensitivity, practical communication skills, and preparedness for real-world mentoring situations. This initiative contributed to the development of a responsible mentoring culture that aligns with the values ​​of empathy, professionalism, and inclusion. Future programs should consider expanding to include peer mentors from other faculties and provide ongoing support mechanisms to strengthen ethical mentoring practices.
Pelatihan Peningkatan Kompetensi Guru dalam Pemanfaatan Canva sebagai Media Pembelajaran Digital Surianto, Dewi Fatmarani; S, Nurul Fadhillah; Dzulfadhilah, Fitriani; Wardah, Siti Syarifah Wafiqah; Baso, Fadhlirrahman
Jurnal Kemitraan Responsif untuk Aksi Inovatif dan Pengabdian Masyarakat Volume 2 Issue No. 2: January 2025
Publisher : Lontara Digitech Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61220/kreativa.v2i2.20259

Abstract

Transformasi digital dalam dunia pendidikan menuntut guru untuk mengembangkan keterampilan dalam menciptakan media pembelajaran yang menarik, berkesan, dan relevan bagi generasi digital. Canva sebagai platform desain yang berani dan gratis serta mudah digunakan, menawarkan peluang besar untuk mendukung pengembangan media terbuka visual dan interaktif di berbagai jenjang pendidikan. Kegiatan pengabdian kepada masyarakat ini bertujuan untuk meningkatkan kompetensi guru di UPT SPF SMPN 50 Makassar dalam memanfaatkan Canva sebagai perangkat pembelajaran yang optimal. Pelatihan diselenggarakan dalam bentuk workshop aplikasi dengan pendekatan inklusif. Peserta dibekali materi konseptual dan teknis dalam Canva, dilanjutkan dengan sesi pelatihan praktik untuk membuat berbagai desain seperti poster, infografis, dan materi ajar presentasi. Penilaian dilakukan dengan pre-test dan post-test yang diberikan kepada 35 guru peserta. Hasil penelitian menunjukkan peningkatan skor rata-rata yang signifikan dari 53,43 pada pre-test menjadi 81,57 pada post-test. Temuan ini menunjukkan bahwa pelatihan terstruktur dapat meningkatkan keterampilan dan pengetahuan guru secara signifikan. Selain peningkatan kognitif, peserta juga menunjukkan antusiasme yang tinggi dan menyatakan keinginan untuk mengintegrasikan Canva ke dalam proses pembelajaran. Disarankan agar pelatihan ini diulang di sekolah lain sebagai bagian dari strategi untuk meningkatkan literasi digital para pendidik.
Pelatihan Perancangan Modul Digital Berbasis Canva untuk Meningkatkan Kreativitas Mahasiswa dalam Mendukung Kegiatan Mentoring Shabrina Syntha Dewi; Dwi Rezky Anadari Sulaiman; Ninik Rahayu Ashadi; Dewi Fatmarani Surianto; Syahrul
Jurnal Pengabdian Masyarakat Vol. 3 No. 1 (2025): Jurnal Pengabdian Masyarakat (AbdiMas)
Publisher : Jurusan Pendidikan Teknik Elektro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59562/abdimas.v3i1.8473

Abstract

Pengabdian kepada masyarakat ini dilaksanakan sebagai upaya untuk meningkatkan kapasitas dan kreativitas mahasiswa dalam mendesain media pembelajaran digital yang mendukung kegiatan mentoring mahasiswa. Kegiatan ini berfokus pada pelatihan perancangan modul digital berbasis Canva, yang dirancang untuk membekali mahasiswa dengan pemahaman teoretis serta keterampilan praktis dalam mengembangkan modul yang menarik, komunikatif, dan efektif. Sasaran kegiatan ini adalah mahasiswa Jurusan Teknik Informatika dan Komputer, Fakultas Teknik, Universitas Negeri Makassar yang terlibat sebagai mentor dalam program pembinaan mahasiswa baru. Melalui pendekatan partisipatif, mahasiswa didorong untuk merancang modul digital yang berfungsi sebagai panduan bagi mentee dalam mengenal nilai-nilai akademik, etika, serta budaya kehidupan kampus. Hasil efektivitas pelatihan diukur melalui pre-test dan post-test, yang menunjukkan peningkatan skor rata-rata dari 62 menjadi 87. Sebanyak 12 kelompok berhasil menghasilkan modul digital dengan konten relevan dan visual yang menarik, dinilai “baik” hingga “sangat baik”. Selain itu, hasil evaluasi juga menunjukkan bahwa 94% peserta merasa pelatihan ini sangat bermanfaat. Kegiatan ini memberikan kontribusi terhadap peningkatan kualitas mentoring dan mendorong mahasiswa menjadi agen pembelajar yang inovatif melalui pemanfaatan teknologi digital.
Classification of Livin' by Mandiri Customer Satisfaction Using MLP with BM25 and TF-IDF Feature Weighting Mardiah, Aina; Dillah, Salsa; Surianto, Dewi Fatmarani; Fadilah, Nur; Zain, Satria Gunawan
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 3, August 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i3.2248

Abstract

The increasing use of mobile banking applications such as Livin' by Mandiri requires an analysis of customer satisfaction based on user reviews. This study classifies customer satisfaction levels using the Multi-Layer Perceptron (MLP) algorithm with two feature extraction methods, namely BM25 and TF-IDF. A total of 1,143 reviews were collected from the Google Play Store and App Store. Three test scenarios were applied: (1) comparison of feature extraction methods, (2) application of Synthetic Minority Over-Sampling Technique (SMOTE), and (3) application of Synonym Replacement-based Easy Data Augmentation (EDA) technique. The evaluation results show that the combination of BM25 and data augmentation produces the highest performance, with 97% accuracy and 98% precision, recall, and F1-score, respectively. BM25 proved to be more effective in understanding the context of reviews, while data augmentation improved the quality of representation, especially for minority classes such as neutral sentiment. These findings make a significant contribution to the improvement of Livin' by Mandiri digital services and serve as a reference for the development of review-based satisfaction classification systems in the digital banking sector.
Evaluasi Pengukuran Semantik Sinonim KBBI Menggunakan Pendekatan Word Embedding Muhammad Rafli Aditya H.; Muhammad Ilham; Dewi Fatmarani Surianto; Abdul Muis Mappalotteng
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 14 No 2: Mei 2025
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jnteti.v14i2.17117

Abstract

Kamus Besar Bahasa Indonesia (KBBI) is a primary resource for data in research on determining word-meaning similarity in Indonesian. This study investigates the effectiveness of word embedding methods and the term frequency–inverse document frequency (TF-IDF) weighting technique in assessing the semantic similarity of synonym pairs. The objective is to measure the similarity of synonym word pairs listed in KBBI by applying cosine similarity, leveraging TF-IDF weighting, various word embedding models, and latent semantic analysis (LSA). The methodology involved data collection, followed by a text preprocessing stage consisting of case folding, stopword removal, stemming, and tokenization. The processed data were transformed into vector representations using word embedding models, including Word2Vec, fastText, GloVe, and sentence-bidirectional encoder representations from transformers (S-BERT), and TF-IDF. LSA was employed for dimensionality reduction of the vectors before similarity testing using cosine similarity, with final evaluation of the results. The findings revealed that fastText significantly improved the similarity scores between synonym pairs, achieving an average similarity score of 0.901 for 30 synonym pairs. Evaluation results indicated an accuracy of 0.88, a recall of 1.00, a precision of 0.81, and an F1 score of 0.90. These results suggest that fastText is more effective in enhancing the accuracy of synonym meaning similarity measurements. Future research is encouraged to expand the corpus and further explore the use of word embedding for semantic similarity tasks. This study contributes to the natural language processing advancement and provides a potential foundation for more accurate language-based applications that assess word meaning similarity in KBBI.
Harnessing Digital Skills For Academic Success: Unveiling The Power of Learning Motivation in Computational Thinking and Tech Integration Rauf, Annajmi; Fakhri, M. Miftach; Fathahillah, Fathahillah; Surianto, Dewi Fatmarani; Baso, Fadhlirrahman; Arifiyanti, Fitria; Amukune, Stephen
Online Learning In Educational Research (OLER) Vol 4, No 2 (2024): Online Learning in Educational Research
Publisher : CV FOUNDAE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58524/oler.v4i2.501

Abstract

The workforce's demand for critical thinking and innovation highlights the need to improve students' problem-solving skills, thus encouraging educational institutions to adopt technology-based strategies for an engaging learning environment. Previous studies have explored the relationship between learning motivation and academic outcomes and the role of technology and web-based media in improving problem-solving skills. However, limited research has comprehensively examined the interaction between computational thinking, technology integration, learning motivation, and student performance. This study aims to examine how Computational Thinking (CT) and Technology Integration (TI) influence Learning Motivation (LM) and Student Performance (SP), providing insights into optimizing digital skills for academic success in the digital age. Data were collected from 426 respondents' university students in Indonesia randomly. A questionnaire with a 5-point Likert scale consisting of several variables such as Computational Thinking, Technology Integration, Learning Motivation, and Student Performance were used in this study. Then, the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) to check the measurement and assessment model. The results showed that CT and TI positively and significantly impacted LM and SP. In addition, LM serves as an important mediator, strengthening the influence of CT and IT on academic outcomes. Specifically, technology integration has a greater impact on LM than CT, while LM significantly improves SP. This study presents a detailed framework for educators to enhance learning experiences by integrating digital skills and fostering student motivation. The findings offer practical implications for developing effective educational strategies that meet the changing demands of the digital age. Future research is recommended to investigate the long-term effects of CT and IT in various educational environments.
Co-Authors A. Arianugerah Ilham A. Arianugerah Ilham AA Sudharmawan, AA Abdal, Nurul Mukhlisah Abdul Muis Mappalotteng Abdul Wahid Adiba, Fathiah Adiba, Fhatiah Agusyana, Nurrahmah Ahmar, Ansari Saleh Ainun Zahra Adistia Akbar, Mohammad Arsan Akmal Hidayat Akmal Hidayat Amiruddin Amri, Muh. Aidil Amukune, Stephen Andi Akram Nur Risal Andi Baso Kaswar Andi Baso Kaswar Andi, Tenriola Andika Isma Anwar Wahid Arifiyanti, Fitria Arsyad, Meisaraswaty Asis Nojeng Asri Ismail Awalia, Andi Dio Nurul Awaliah, Widiarti Azis, Putri Alysia B., Muhammad Fajar Bakri, Muh. Fajrin Baso, Fadhlirrahman Budiarti, Nur Azizah Eka Cahyana Resky, Andi Aulia Clarisha, Windi Dary Mochamad Rifqie Della Fadhilatunisa Dhaffa Mulya Rahman Dhia Rhania Dillah, Salsa Diny Anggriani Adnas Dwi Rezky Anadari Sulaiman Edy, Marwan Ramdhany Erva Irianti Fadhlirrahman Baso FADIAH, NUR Fajar B, Muhammad Fani, A. Astri Merilsa Fathahillah Fathahillah Fathahillah Fhatiah Adiba Fhatiah Adiba Fitriani Dzulfadhilah Fitriyanty Dwi Lestary Fizar Syafaat Furqan Ali Yusuf Haerunnisya Makmur Hardy M, Galang Hartini Ramli Hasnining, Ayu Helmy, Ahnaf Riyandirga Ariyansyah Putra Hidayat M., Wahyu Ilyas, Sitti Nurhidayah Indanasufya, Indanasufya Inez Sri Wahyuningsi Manguling Irwandi Ishaq, Muhammad Fahrul Rosi Ivan Fadillah Akram Iwan Suhardi Jariah S.Intam, Rezki Nurul Jariah, Rezki Nurul Jasruddin Jumadi Mabe Parenreng Jumadil Ahmad Safi’i Jusniar Khaerunnisa Nur Fatimah Syahnur KHAERUNNISA NUR FATIMAH SYAHNUR Kurnia Prima Putra Lapendy, Jessica Crisfin Lavicza, Zsolt Lestary, Fitriyanty Dwi Lutfiah Tri Syahyaningsih M. Miftach Fakhri Makmur, Haerunnisya MARDIAH, AINA Marhawati, Marhawati Muh. Juharman Muhammad Agung Muhammad Akil Musi Muhammad Ansarullah S. Tabbu Muhammad Fajar B Muhammad Fajar B MUHAMMAD ILHAM Muhammad Nur Yusri Muhammad Rafli Aditya H. Muhammad Rakib Muhammad Syafruddin Akmal Muhammad Try Dharsana Muharni Muharni Mulia, Musda Rida Muthmainnah, Aindri Muthmainnah, Aindri Rizky Nafil Rizqullah Rajab Nafil Rizqullah Rajab Nashiruddin Sahal Muhtadi Nasrullah, Asmaul Husnah Natsir, Nasrah Ninik Rahayu Ashadi NIRMALA, PUTRI Nur Fadiah NUR FADILAH Nur Rahmi Nur Risal, Andi Akram Nurjannah Nurul Fadhilah Nurul Fadhillah S Nurul Fadhillah S Nurul Mukhlisah Abdal Pamput, Jessicha Pamput, Jessicha Putrianingsih Parenreng, Jumadi M. Putri Zhachilia Susanto R, Mutmainnah Rauf, Annajmi Resky, Andi Aulia Cahyana Rezki Angriani Pratiwi Kadir Rezki Nurul Jariah Rezki Nurul Jariah S.Intam Ridwan Daud Mahande Rivai, Andi Tenri Ola Rosidah Rusli, Risvan S, Muh. Rizal S, Nurul Fadhillah Sari Wulandari Sari, Putri Nanda Sasmita Sasmita Satria Gunawan Zain Setialaksana, Wirawan - Shabrina Syntha Dewi Shasa Inayah Vega Shasa Inayah Vega Siti Syarifah Wafiqah Wardah Siti Syarifah Wafiqah Wardah Soeharto Soeharto Sudarmanto Jayanegara Surianto, Dewi Fatmawati Syahrul Syam, Abd. Azis Syamsurijal Syamsurijal, Syamsurijal Tenriola, Andi Udin Sidik Sidin Wahid, M Syahid Nur Wahid, Yokogeri Abdullah Wahyu Hidayat M Wahyu Hidayat M WAHYUDI Warda Wahyuni Wardah, Siti Syarifah Wafiqah Wardani, Ayu Tri WULANDARI Wulandari Wulandari Wulandari Wulandari Wulandari Zulfikar, Muh Ihsan Zulhajji, Zulhajji