p-Index From 2021 - 2026
7.682
P-Index
This Author published in this journals
All Journal Cakrawala Pendidikan Jurnal Pendidikan Matematika Jurnal Matematika Jurnal Pendidikan Matematika Undiksha Jurnal Pendidikan Sains Journal of Education and Learning (EduLearn) Journal on Mathematics Education (JME) Journal on Mathematics Education (JME) AKSIOMA: Jurnal Program Studi Pendidikan Matematika SIGMA: Jurnal Pendidikan Matematika JIPM (Jurnal Ilmiah Pendidikan Matematika) Phenomenon : Jurnal Pendidikan MIPA Edu Sains: Jurnal Pendidikan Sains dan Matematika EDU-MAT: Jurnal Pendidikan Matematika Journal of Research and Advances in Mathematics Education Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JPPM (JURNAL PENELITIAN DAN PEMBELAJARAN MATEMATIKA) AKSIOMA Al-Jabar : Jurnal Pendidikan Matematika NUMERICAL (Jurnal Matematika dan Pendidikan Matematika) Briliant: Jurnal Riset dan Konseptual Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Jurnal Kajian Pembelajaran Matematika JRPM (Jurnal Review Pembelajaran Matematika) JMPM: Jurnal Matematika dan Pendidikan Matematika PRISMA IndoMath: Indonesia Mathematics Education Muallimuna : Jurnal Madrasah Ibtidaiyah Communications in Science and Technology JTAM (Jurnal Teori dan Aplikasi Matematika) International Journal on Emerging Mathematics Education MENDIDIK: Jurnal Kajian Pendidikan dan Pengajaran Premiere Educandum: Jurnal Pendidikan Dasar dan Pembelajaran AXIOM : Jurnal Pendidikan dan Matematika Jurnal Cendekia : Jurnal Pendidikan Matematika Prima: Jurnal Pendidikan Matematika SIGMA Indonesian Journal on Learning and Advanced Education (IJOLAE) ANARGYA: Jurnal Ilmiah Pendidikan Matematika Math Educa Journal Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Media Pendidikan Matematika International Journal of Insights for Mathematics Teaching (IJOIMT) MATHEMA: JURNAL PENDIDIKAN MATEMATIKA International Journal of Humanities and Innovation (IJHI) Mosharafa: Jurnal Pendidikan Matematika Al Hikmah: Journal of Education Eduvest - Journal of Universal Studies Jurnal Penelitian Pendidikan Indonesia Jurnal Pendidikan Progresif Media Pendidikan Matematika
Claim Missing Document
Check
Articles

CHARACTERISTICS OF STUDENTS’ ABDUCTIVE REASONING IN SOLVING ALGEBRA PROBLEMS Hidayah, Indriati Nurul; Sa'dijah, Cholis; Subanji, Subanji; Sudirman, Sudirman
Journal on Mathematics Education Vol 11, No 3 (2020)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jme.11.3.11869.347-362

Abstract

When students solve an algebra problem, students try to deduce the facts in the problem. This step is imperative, students can draw conclusions from the facts and devise a plan to solve the problem. Drawing conclusions from facts is called reasoning. Some kinds of reasoning are deductive, inductive, and abductive. This article explores the characteristics of some types of abductive reasoning used by mathematics education students in problem-solving related to using facts on the problems. Fifty-eight students were asked to solve an algebra problem. It was found that the student’s solutions could be grouped into four types of abductive reasoning. From each group, one student was interviewed to have more details on the types. First, the creative conjectures type, the students can solve the problems and develop new ideas related to the problems; second, fact optimization type, the students make conjecture of the answer, then confirm it by deductive reasoning; third, factual error type, students use facts outside of the problems to solve it, but the facts are wrong; and fourth,  mistaken fact type, the students assume the questionable thing as a given fact. Therefore, teachers should encourage the students to use creative conjectures and fact optimization when learning mathematics.
Komunikasi Matematis Tulis Siswa pada Pembelajaran Inkuiri Terbimbing Chusnul Ma'rifah; Cholis Sa'dijah; Subanji Subanji
BRILIANT: Jurnal Riset dan Konseptual Vol 6, No 2 (2021): Vol 6, No 2 (2021): Volume 6 Nomor 2, Mei 2021
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (693.941 KB) | DOI: 10.28926/briliant.v6i2.628

Abstract

Penelitian ini bertujuan mendeskripsikan kemampuan komunikasi matematis tulis siswa pada lembar aktivitas dengan model inkuiri terbimbing. Penelitian bersifat deskriptif kualitatif. Subjek yang digunakan 10 siswa MA Miftahul Huda Kepanjen Malang. Dari hasil penelitian, diperoleh tahapan analisis strategi mendapat nilai tertinggi dengan prosentase 100% yang berada pada katagori tinggi, sedangkan tahapan terendah adalah tahap pengajuan hipotesis dengan nilai 52,25% yang berada pada katagori sedang. Pada tahapan analisis strategi, siswa sudah dapat merepresentasikan notasi matematis dan menggunakan manipulasi matematis secara benar sehingga dapat menemukan rumus barisan aritmetika dan geometri, sedangkan pada tahap pengajuan hipotesis, respon sudah dituliskan siswa namun belum benar atau akurat
PENALARAN INDUKTIF SISWA SMA DALAM MENYELESAIKAN MASALAH TRANSFORMASI GEOMETRI Serli Evidiasari; Subanji Subanji; Santi Irawati
Jurnal Kajian Pembelajaran Matematika Vol 3, No 2 (2019): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1182.133 KB)

Abstract

This study describes the inductive reasoning  of high school students in solving geometry transformation problems.The steps of inductive reasoning in mathematics namely: (1) discussing pattern that occur, (2) making guesses about general patterns that might apply, (3) making generalizations, (4) proving generalizations deductively. The assesment used in this study is descriptive qualitative. The data source is the result of a geometry transformation test involving 35 students grouped by ability are high, intermediate and low. Then select 3 students who represent each group. The results of this study are high ability students can perform all streps of inductive reasoning and the answer given are appropriate, capable students are able to take all the steps but  still make some fault in generalizaton step, low ability student can analyze data only and  can not interpret mathematical symbols.
STUDI KASUS : KOMUNIKASI MATEMATIS SISWA HOMESCHOOLING MELALUI GESTURE PADA MATERI IRISAN DUA HIMPUNAN Fitri Umardiyah; Subanji Subanjo; Dwiyana Dwiyana
Jurnal Kajian Pembelajaran Matematika Vol 1, No 2 (2017): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (439.318 KB)

Abstract

Penelitian ini bertujuan mendeskripsikan komunikasi matematis melalui gesture pada materi operasi irisan dua himpunan. Jenis penelitian ini adalah penelitian deskriptif  dengan pendekatan kualitatif. Subjek pada penelitian ini adalah seorang siswa  Homeschooling kelas VII.  Peneliti melakukan pengambilan data melalui wawancara dan observasi selama pembelajaran . Untuk memperkuat data dalam penelitian ini, peneliti merekam kegiatan pembelajaran dan wawancara secara audio visual. Hasil penelitian menunjukkan bahwa (1) siswa mengomunikasikan ide matematis dengan singkat melalui deictic gesture berupa gesture menunjuk tulisan yang ia buat, (2) siswa mengomunikasikan ide matematis  dengan bebas (freedom) melalui iconic gesture yang berupa gesture menggambar diagram Venn, (3) siswa mengomunikasikan ide matematis melalui methaporic gesture yang berupa gesture yang menjelaskan konten abstrak yaitu notasi pembentuk himpunan
DESKRIPSI KESALAHAN STRUKTUR BERPIKIR SISWA SMP DALAM MENYELESAIKAN MASALAH GEOMETRI SERTA DEFRAGMENTINGNYA: SUATU STUDI KASUS Taufiq Hidayanto; Subanji Subanji; Erry Hidayanto
Jurnal Kajian Pembelajaran Matematika Vol 1, No 1 (2017): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (856.368 KB)

Abstract

It is revealed that as a compulsory mathematic subject for junior high school students, most students are struggling to solve geometric problem. As an effort to fix this condition, this article describes mistakes of junior high school students’ structural thinking in solving geometric problem. Subjects’ mistake were assessed by Subanji’s (2015) theory of conceptual construction mistake and mathematical problem solving. Researcher then defragmented subjects’ thinking structure in order to solve problems effectively. The result shows that subjects experienced miss logical construction and construction gap. Miss logical construction occurred because students’ logical mistake in solving the problem, while the construction gap happened due to certain incomplete schemes in subjects’ problem solving thinking structure. Defragmenting was conducted by assessing mistakenly constructed scheme. Then, unconstructed scheme was revealed. When scheme had considered as sufficient, the constructed scheme were knitted into an interconnected scheme and subjects’ thinking structure became complete. Decomposition of incorrect structured schemes used cognitive conflict, while scheme and scheme knitting applied scaffolding.
PENERAPAN PEMBELAJARAN INKUIRI HIPOTETIS UNTUK MENINGKATKAN AKTIVITAS DAN MEMAHAMKAN SISWA MATERI BARISAN DAN DERET Endang Trinoviawati; Subanji Subanji; I Made Sulandra
Jurnal Kajian Pembelajaran Matematika Vol 3, No 2 (2019): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sequence and series have been taught directly through theory from books, making it difficult for students to link between concepts or between theories, so that there are still many students who can only solve problems limited to what has been exemplified by the teacher. This study aims to describe the application of hypothetical inquiry learning that can increase student activity and understand the sequence and series material. This research is a classroom action research conducted in April 2017. The research subjects were 38 students of class X IPA 5 SMAN 8 Malang. The results showed that applying hypothetical inquiry in learning could increase student activity and learning completeness. The increase in student activity from 11% in cycle I to 63% active criteria in cycle II, the percentage of students completing in cycle I, namely 63%, increased to 92% in cycle II.
METAKOGNISI SISWA DALAM PEMECAHAN MASALAH TRIGONOMETRI Dimas Femy Sasongko; Subanji Subanji; I Made Sulandra
Jurnal Kajian Pembelajaran Matematika Vol 2, No 2 (2018): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (855.246 KB)

Abstract

Metacognition is an influencing factor in mathematical problem solving. The aim of this qualitative research is to comprehend metacognition from one student of High Problem Solving Achiever (HPSA) and one student of Low Problem Solving Achiever (LPSA) when solving trigonometry problems that focused on metacognitive awareness, metacognitive regulation, and metacognitive evaluation aspects. The finding indicates that in metacognitive awareness, LPSA has difficulty to model the problem. In metacognitive regulation, the global plan, local plan, and actions which composed by LPSA didn’t tend to the solution. In metacognitive evaluation, eventhough LPSA did lots of metacognition activities but it didn’t guarantee achieving correct solution
DIAGNOSIS KESULITAN PENALARAN MATEMATIS SISWA DALAM MENYELESAIKAN MASALAH POLA BILANGAN Nur Indah Permata Sari; Subanji Subanji; Erry Hidayanto
Jurnal Kajian Pembelajaran Matematika Vol 2, No 2 (2018): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (366.903 KB)

Abstract

Tujuan penelitian ini adalah mendeskripsikan bentuk  kesalahan penalaran matematis siswa dalam menyelesaikan masalah pola bilangan. Jenis penelitian ini adalah penelitian kualitatif deskripstif. Subjek penelitian adalah siswa kelas VII SMP Negeri 1 Pogalan Trenggalek yang dipilih berdasarkan kesalahan dalam tes diagnostik dan kemampuan komunikasi. Data penelitian dikumpulkan melalui tes dan wawancara. Data penelitian ini adalah lembar hasil jawaban siswa melalui tes awal (tes diagnostik). Aktivitas analisis data adalah (1) mengolah dan mempersiapkan data untuk dianalisis, (2) membaca keseluruhan data, (3) menganalisis lebih detail dengan meng – coding data, (4) menerapkan proses coding, (5) menunjukkan bagaimana deskripsi dan tema-tema ini akan disajikan kembali dalam laporan kualitatif serta (6) memaknai data. Hasil penelitian menunjukkan bahwa kesulitan yang dialami subjek SP I, SP II, dan SP III dalam menyelesaikan masalah pola bilangan yaitu (1) mendeteksi keteraturan dalam suatu pola, (2) merumuskan pola dari susunan-susunan bola, dan (3) menentukan banyaknya bola pada suku ke-n. 
METAKOGNISI SISWA BERGAYA KOGNITIF FIELD-INDEPENDENT DALAM MEMECAHKAN MASALAH MATEMATIKA BERDASARKAN TAHAPAN POLYA Afin Nur Latifa; Subanji Subanji; Erry Hidayanto
Jurnal Kajian Pembelajaran Matematika Vol 4, No 1 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (722.356 KB)

Abstract

Metacognition is one important component in cognitive function and cognitive development that has a close relationship with students' problem solving abilities. One factor that can affect student metacognition but is rarely considered in mathematics learning is student cognitive style. The purpose of this study is to describe the metacognition of field-independent cognitive style students in solving mathematical problems based on Polya's stages. This research is a descriptive qualitative study using a problem solving test instrument and interview guidelines to collect data. The subjects in this study were 2 field-independent cognitive style students. The subject was asked to work on mathematical problem solving problems and then interviewed based on the results of student work. The results showed that students' metacognition awareness, regulation, and evaluation emerged during the problem solving stage. This shows that metacognition can help students with field-independent cognitive style in solving problems.
Students’ Semantic-Proof Production in Proving a Mathematical Proposition Syamsuri Syamsuri; Purwanto Purwanto; Subanji Subanji; Santi Irawati
Journal of Education and Learning (EduLearn) Vol 12, No 3: August 2018
Publisher : Intelektual Pustaka Media Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (546.955 KB) | DOI: 10.11591/edulearn.v12i3.5578

Abstract

Proving a proposition is emphasized in undergraduate mathematics learning. There are three strategies in proving or proof-production, i.e.: procedural-proof, syntactic-proof, and semantic-proof production. Students’ difficulties in proving can occur in constructing a proof. In this article, we focused on students’ thinking when proving using semantic-proof production. This research is qualitative research that conducted on students majored in mathematics education in public university in Banten province, Indonesia. Data was obtained through asking students to solve proving-task using think-aloud and then following by interview based task. Results show that characterization of students’ thinking using semantic-proof production can be classified into three categories, i.e.: (1) false-semantic, (2) proof-semantic for clarification of proposition, (3) proof-semantic for remembering concept. Both category (1) and (2) occurred before students proven formally in Representation System Proof (RSP). Nevertheless, category (3) occurred when students have proven the task in RSP then step out from RSP while proving. Based on the results, some suitable learning activities should be designed to support the construction of these mental categories.
Co-Authors 'Adna, Syita Fatih Abdul Haris Rosyidi Abdul Haris Rosyidi Abdur Rahman As’ari Abdur Rohim, Abdur Abdurrahim Arsyad Afin Nur Latifa Agung Prasetyo Abadi Agus Prianto Ahmad Farid Haebah Akbar Sutawidjadja Akbar Sutawidjaja Akbar Sutawidjaja, Akbar Alhikma, Nur Alaviyah Alif Mudiono Alip Rahmawati Zahrotun Nisak Alyani, Nabila Nur Amalia Silwana Ana Fitriah ANDRIANI, RULI Anggraini Dwi Ikhwani Anggraini, Elisa Anjali, I Gusti Agung Shomia Ari Kusuma Sulyandari Aribowo, Bayu Exsanty Arif Rahman Hakim Arifah Adlina Rashahan Astuti, Ririn Novia Aulia Nadia Sari Barep Yohanes Bhakti Setya Budi Budi, Bhakti Setya Cholis Sa’dijah Chusnul Ma'rifah Chusnul Ma'rifah Daroini, Mustain Bagus Deni Hamdani Dian Kurniati Didimus Nuham, Didimus Dimas Femy Sasongko Dwiyana Dwiyana Dwiyana Dwiyana Dyah Ayu Pramoda Wardhani Dyah Triwahyuningtyas Dyah Triwahyuningtyas Edy Bambang Irawan Eka Resti Wulan Eko Waluyo Elli Kusumawati Endang Trinoviawati Erry Hidayanto Evidiasari, Serli Fadhil Zil Ikram Feriyanto Feriyanto Hamdani, Deni Hamdani, Deni Hery Susanto Hery Susanto Hidayati, Vivi Rachmatul I Ketut Suada I Made Sulandra I Nengah Parta Iffanna Fitrotul Aaidati Ika Santia Indah Syafitri T Indriati Nurul Hidayah Intan Sari Rufiana Ipung Yuwono Iqbal Ramadani Irawati, Santi Irna Natalis Sanit Ishmatul Maula, Ishmatul Ismatul Maula Jennah, Mufliatul Kadek Adi Wibawa Karolin Natalia T Khair, Muhammad Sa'duddien Khalimatus Syuhriyah Laelinatul Choeriyah Laelinatul Choeriyah Laily Wijayanti Utami Lamowa, Rachmad Abubakar Lestary, Ratnah Lydia Lia Prayitno Lydia Lia Prayitno, Lydia Lia Makbul Muksar Malik, Fatus Atho'ul Manyunu, Muhamatsakree Martha Lestari Miftachus Sururoh Mohammad Dadan Sundawan Mufidha, Nurul Muhamatsakree Manyunu Muhammad Ainur Rizqi Muhammad Irfan Muhammad Irfan Muniroh Novisa Nabilah Mansur Nathasa Pramudita Irianti Nathasa Pramudita Irianti, Nathasa Pramudita Netti, Syukma Netti Syukma Ningtyas, Yoga Dwi Windy Kusuma Ninik Mutianingsih, Ninik Novi Nurhayati Novisa, Muniroh Nur Fitri Amalia Nur Hasan Nur Indah Permata Sari Nurul Mufidha Nury Azkiya Umamy Permadi, Hendro Punaji Setyosari Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto, Purwanto Puspita Ayu Damayanti Putri Ariningtyas Putri, Nanda Azzahra Qohar, Abd. Rashahan, Arifah Adlina Refni Adesia Pradiarti Risa Utaminingsih Rizky Nova Damayanti Ruli Andriani Rustanto Rahardi Sa’dijah, Cholis Sandie Sartati, Setiawan Budi Satriya Adika Arif Atmaja Satriya Adika Arif Atmaja Sa’dijah, Cholish Selly Meinda Dwi Cahyaningsih Serli Evidiasari Serli Evidiasari Setiawan Budi Sartati Silwana, Amalia Sisworo Sri Mulyati Sri Mulyati Sri Subarinah Sri Untari Suci Yuniati Sudirman Sudirman Sudirman Sudirman Sukorianto Sukorianto Sukoriyanto Suryaningrum, Christine Wulandari Susiswo Sutawdjaja, Akbar Sutawidjadja, Akbar Swasono Rahardjo Swasono Raharjo Swastika, Galuh Tyasing Syamsiar, Syamsiar Syamsul Hadi Syamsuri Syamsuri Syamsuri Syamsuri Syamsuri Syamsuri, Syamsuri Syarifudin Syarifudin Taufiq Hidayanto Tjang Daniel Chandra Toto Nusantara Umamy, Nury Azkiya Umardiyah, Fitri umi faizah Viving Laila Wahyu Santoso Wahyuningtiyas, Kharisma Wardhani, Indah Setyo Wasti Tampi Wasti Tampi Wulan Anindya Wardhani Yandi Raharjo, Eko Yanna Purwitaningsih Yoga Dwi Windy Kusuma Ningtyas Yoggy Febriawan Yundari, Yundari