p-Index From 2021 - 2026
7.682
P-Index
This Author published in this journals
All Journal Cakrawala Pendidikan Jurnal Pendidikan Matematika Jurnal Matematika Jurnal Pendidikan Matematika Undiksha Jurnal Pendidikan Sains Journal of Education and Learning (EduLearn) Journal on Mathematics Education (JME) Journal on Mathematics Education (JME) AKSIOMA: Jurnal Program Studi Pendidikan Matematika SIGMA: Jurnal Pendidikan Matematika JIPM (Jurnal Ilmiah Pendidikan Matematika) Phenomenon : Jurnal Pendidikan MIPA Edu Sains: Jurnal Pendidikan Sains dan Matematika EDU-MAT: Jurnal Pendidikan Matematika Journal of Research and Advances in Mathematics Education Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JPPM (JURNAL PENELITIAN DAN PEMBELAJARAN MATEMATIKA) AKSIOMA Al-Jabar : Jurnal Pendidikan Matematika NUMERICAL (Jurnal Matematika dan Pendidikan Matematika) Briliant: Jurnal Riset dan Konseptual Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Jurnal Kajian Pembelajaran Matematika JRPM (Jurnal Review Pembelajaran Matematika) JMPM: Jurnal Matematika dan Pendidikan Matematika PRISMA IndoMath: Indonesia Mathematics Education Muallimuna : Jurnal Madrasah Ibtidaiyah Communications in Science and Technology JTAM (Jurnal Teori dan Aplikasi Matematika) International Journal on Emerging Mathematics Education MENDIDIK: Jurnal Kajian Pendidikan dan Pengajaran Premiere Educandum: Jurnal Pendidikan Dasar dan Pembelajaran AXIOM : Jurnal Pendidikan dan Matematika Jurnal Cendekia : Jurnal Pendidikan Matematika Prima: Jurnal Pendidikan Matematika SIGMA Indonesian Journal on Learning and Advanced Education (IJOLAE) ANARGYA: Jurnal Ilmiah Pendidikan Matematika Math Educa Journal Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Media Pendidikan Matematika International Journal of Insights for Mathematics Teaching (IJOIMT) MATHEMA: JURNAL PENDIDIKAN MATEMATIKA International Journal of Humanities and Innovation (IJHI) Mosharafa: Jurnal Pendidikan Matematika Al Hikmah: Journal of Education Eduvest - Journal of Universal Studies Jurnal Penelitian Pendidikan Indonesia Jurnal Pendidikan Progresif Media Pendidikan Matematika
Claim Missing Document
Check
Articles

Student difficulties in solving covariational problems Sandie; Purwanto; Subanji; Erry Hidayanto
International Journal of Humanities and Innovation (IJHI) Vol. 2 No. 2 (2019): June
Publisher : Center for Humanities and Innovation Studies

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33750/ijhi.v2i2.38

Abstract

This study discusses the difficulties of students in solving covariational problems. The study was conducted on 25 students with 6th-semester studies who had completed calculus courses. Students are asked to verbalize what they think while solving problems (think aloud). Next, students are interviewed with an in-depth interview technique to explore the thinking process. The results showed 88% of students had difficulties when given covariational problems. Students are familiar with mathematical problems with counting operations. When given a problem without information, students experience difficulties. 
Proses Berpikir Siswa Quitter dalam Menyelesaikan Masalah SPLDV Berdasarkan Langkah-langkah Polya Nathasa Pramudita Irianti; Subanji Subanji; Tjang Daniel Chandra
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 1, No 2: September 2016 - Februari 2017
Publisher : Universitas Pesantren Tinggi Darul Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/jmpm.v1i2.582

Abstract

Penelitian bertujuan mendeskripsikan proses berpikir siswa quitter dalam menyelesaikan masalah SPLDV. Pertama, dilakukan tes ARP (Adversity Response Profile) untuk mengetahui tipe adversity quotient dari masing-masing siswa. Selanjutnya, dipilih siswa dengan tipe quitter. Siswa diberikan tugas pemecahan masalah SPLDV dan wawancara berbasis tugas. Dalam pemecahan masalah ini, digunakan langkah-langkah pemecahan polya yaitu memahami masalah, menyusun rencana penyelesaian, menyelesaikan masalah sesuai perencanaan, dan memeriksa kembali hasil yang telah diperoleh. Hasilnya, siswa dengan tipe quitter melakukan asimilasi saat memahami masalah dan akomodasi pada langkah menyusun rencana penyelesaian, menyelesaikan masalah sesuai perencanaan, dan memeriksa kembali hasil yang telah diperoleh. Untuk masalah rumit, siswa dengan tipe quitter melakukan asimilasi salah (asimilasi yang memberikan hasil salah) ataupun akomodasi tidak sempurna karena informasi yang dimiliki kurang.
ANALISIS KEMAMPUAN ANALISIS KEMAMPUAN PENALARAN MATEMATIS SISWA SMA PADA MATERI MATRIKS Martha Lestari; Subanji Subanji; Santi Irawati
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 11, No 1 (2022)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (524.037 KB) | DOI: 10.24127/ajpm.v11i1.4577

Abstract

Penelitian ini bertujuan untuk menganalisis tingkat kemampuan penalaran matematis siswa dalam menyelesaikan masalah matriks. Penelitian ini merupakan penelitian deskriptif kualitatif dengan teknik analisis data dimodifikasi dari Sumaryanta (2015) yang kemudian digolongkan mengikuti kategori oleh Riduwan (2018). Subjek penelitian ini adalah siswa kelas XI IPA 1 sesi B di SMA Negeri 4 Kota Jambi sebanyak 17 siswa. Instrumen yang digunakan adalah lembar tes kemampuan penalaran matematis siswa dan pedoman wawancara. Berdasarkan hasil analisis diperoleh bahwa kemampuan penalaran matematis dalam menyajikan pernyataan matematika secara tertulis mencapai; 80,59%; penalaran matematis siswa dalam melakukan manipulasi matematis mencapai 99,41%; penalaran matematis siswa dalam memeriksa kesahihan dari suatu argumen mencapai 93,72%; dan penalaran matematis siswa dalam menarik kesimpulan mencapai 69,41%. Rerata kemampuan penalaran matematis siswa mencapai 85,78%. tergolong sangat baik.This study aims to analyze the level of students' mathematical reasoning ability in solving matrix problems. This research is a qualitative descriptive study with data analysis techniques modified from Sumaryanta (2015) which was then classified by category by Riduwan (2018). The subjects of this study were students of class XI IPA 1 session B at SMA Negeri 4 Jambi City as many as 17 students. The instrument used is a student's mathematical reasoning ability test sheet and interview guidelines. Based on the results of the analysis, it was found that the ability of mathematical reasoning in presenting mathematical statements in writing reached; 80.59%; students' mathematical reasoning in performing mathematical manipulations reached 99.41%; students' mathematical reasoning in checking the validity of an argument reached 93.72%; and students' mathematical reasoning in drawing conclusions reached 69.41%. The average mathematical reasoning ability of students reached 85.78%. classified as very good.
Student Argumentation Structure in Solving Statistical Problems Based on Adversity Quotient Iffanna Fitrotul Aaidati; Subanji Subanji; I Made Sulandra; Hendro Permadi
Jurnal Pendidikan Matematika Vol 16, No 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jpm.16.2.16633.121-140

Abstract

Evaluation of the argumentation structure is needed to check the quality of student argumentation to produce appropriate problem-solving. Such evaluation can be carried out by identifying the constituent components of the argument. This study aims to describe the structure of student argumentation in solving statistical problems based on the Adversity Quotient (AQ). This qualitative descriptive type of research involved 52 students who were taking statistical methods courses. Participants were classified into three Categories of Adversity Quotient based on the results of the ARP (Adversity Response Profile) questionnaire. Data were obtained using statistical problem tests and interviews. The results showed that students with the AQ Climber category were able to meet all the constituent components of argumentation when solving statistical problems. AQ Camper-type students are only able to meet three components, namely claims, evidence, and reasoning. Meanwhile, students with the AQ Quitter type are only able to fulfill one component, namely claims. Based on the results of the study, the level of Adversity Quotient determines the quality of the student's argumentation structure when solving statistical problems.
Proses Metakognisi Siswa dalam Pemecahan Masalah Aljabar Berdasarkan Taksonomi SOLO Wasti Tampi; , Subanji; , Sisworo
Jurnal Matematika Vol 7 No 1 (2017)
Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JMAT.2017.v07.i01.p80

Abstract

This study describes the metacognition process of students in problem solving based on the SOLO taxonomy. This study used a qualitative approach with descriptive research. The results of this study suggest that the metacognition process of students that occurs in problems solving of algebra at the levels of unistructural, multistrucural, relational and extended abstract includes the process: metacognitive awareness, metacognitive evaluating and regulating metacognitive. Keywords: problem solving, metacognition, SOLO taxonomy.
EXPLORING MATHEMATICAL REPRESENTATIONS IN SOLVING ILL-STRUCTURED PROBLEMS: THE CASE OF QUADRATIC FUNCTION Ika Santia; Purwanto Purwanto; Akbar Sutawidjadja; Sudirman Sudirman; Subanji Subanji
Journal on Mathematics Education Vol 10, No 3 (2019)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (777.857 KB) | DOI: 10.22342/jme.10.3.7600.365-378

Abstract

Mathematical representation has an essential role in solving mathematical problems. However, there are still many mathematics education students who have difficulty in representing ill-structured problems. Even though the ill-structured-problem-solving tasks designed to help mathematics education students understand the relevance and meaningfulness of what they learn, they also are connected with their prior knowledge. The focus of this research is exploring the used of mathematical representations in solving ill-structured problems involving quadratic functions. The topic of quadratic functions is considered necessary in mathematics teaching and learning in higher education. It's because many mathematics education students have difficulty in understanding these matters, and they also didn’t appreciate their advantage and application in daily life. The researchers' explored mathematical representation as used by two subjects from fifty-four mathematics education students at the University of Nusantara PGRI Kediri by using a qualitative approach. We were selected due to their completed all steps for solving the ill-structured problem, and there have different ways of solving these problems. Mathematical representation explored through an analytical framework of solving ill-structured issues such as representing problems, developing alternative solutions, creating solution justifications, monitoring, and evaluating. The data analysis used technique triangulation. The results show that verbal and symbolic representations used both subjects to calculate, detect, correct errors, and justify their answers. However, the visual representation used only by the first subject to detect and correct errors.
CHARACTERISTICS OF STUDENTS’ ABDUCTIVE REASONING IN SOLVING ALGEBRA PROBLEMS Indriati Nurul Hidayah; Cholis Sa'dijah; Subanji Subanji; Sudirman Sudirman
Journal on Mathematics Education Vol 11, No 3 (2020)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jme.11.3.11869.347-362

Abstract

When students solve an algebra problem, students try to deduce the facts in the problem. This step is imperative, students can draw conclusions from the facts and devise a plan to solve the problem. Drawing conclusions from facts is called reasoning. Some kinds of reasoning are deductive, inductive, and abductive. This article explores the characteristics of some types of abductive reasoning used by mathematics education students in problem-solving related to using facts on the problems. Fifty-eight students were asked to solve an algebra problem. It was found that the student’s solutions could be grouped into four types of abductive reasoning. From each group, one student was interviewed to have more details on the types. First, the creative conjectures type, the students can solve the problems and develop new ideas related to the problems; second, fact optimization type, the students make conjecture of the answer, then confirm it by deductive reasoning; third, factual error type, students use facts outside of the problems to solve it, but the facts are wrong; and fourth,  mistaken fact type, the students assume the questionable thing as a given fact. Therefore, teachers should encourage the students to use creative conjectures and fact optimization when learning mathematics.
SEMIOTIC REASONING EMERGES IN CONSTRUCTING PROPERTIES OF A RECTANGLE: A STUDY OF ADVERSITY QUOTIENT Christine Wulandari Suryaningrum; Purwanto Purwanto; Subanji Subanji; Hery Susanto; Yoga Dwi Windy Kusuma Ningtyas; Muhammad Irfan
Journal on Mathematics Education Vol 11, No 1 (2020)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (593.937 KB) | DOI: 10.22342/jme.11.1.9766.95-110

Abstract

Semiotics is simply defined as the sign-using to represent a mathematical concept in a problem-solving. Semiotic reasoning of constructing concept is a process of drawing a conclusion based on object, representamen (sign), and interpretant. This paper aims to describe the phases of semiotic reasoning of elementary students in constructing the properties of a rectangle. The participants of the present qualitative study are three elementary students classified into three levels of Adversity Quotient (AQ): quitter/AQ low, champer/AQ medium, and climber/AQ high. The results show three participants identify object by observing objects around them. In creating sign stage, they made the same sign that was a rectangular image. However, in three last stages, namely interpret sign, find out properties of sign, and discover properties of a rectangle, they made different ways. The quitter found two characteristics of rectangular objects then derived it to be a rectangle’s properties. The champer found four characteristics of the objects then it was derived to be two properties of a rectangle. By contrast, Climber found six characteristics of the sign and derived all of these to be four properties of a rectangle. In addition, Climber could determine the properties of a rectangle correctly.
TEACHERS EXPECTATION OF STUDENTS’ THINKING PROCESSES IN WRITTEN WORKS: A SURVEY OF TEACHERS’ READINESS IN MAKING THINKING VISIBLE Abdur Rahman As'ari; Dian Kurniati; Subanji Subanji
Journal on Mathematics Education Vol 10, No 3 (2019)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (876.323 KB) | DOI: 10.22342/jme.10.3.7978.409-424

Abstract

The trends of teaching mathematical thinking and the existence of two thinking skills (critical dan creative thinking) the required by 21st-century skills have created needs for teachers to know their students’ thinking processes. This study is intended to portray how mathematics teachers expect their students showing their thinking processes in students’ written work. The authors surveyed Whatsapp and Telegram group of mathematics teachers. First, the authors shared the result of the literature review and the governmental regulations about the need to develop thinking skills. Second, the authors stated that the potentials of students’ written works as a tool for knowing students’ thinking processes. Third, the authors sent a simple mathematical problem with the topic of algebra and asked the mathematics teachers how should their students answer that problem such that they can easily monitor and assess their students’ thinking processes. A total of 25 teachers participated voluntarily in this survey. Results of the survey were triangulated with direct trial data in lecture classes at both undergraduate and postgraduate levels. The result indicates that participating mathematics teachers do not expect too much for their students to show their thinking processes in written work. Teacher’s focus is mostly on the accuracy and the correctness of their students’ mathematics answer.
PROFIL KEMAMPUAN KOMUNIKASI MATEMATIS PESERTA DIDIK DALAM PEMECAHAN MASALAH SOAL CERITA Chusnul Ma'rifah; Cholis Sa’dijah; Subanji Subanji; Toto Nusantara
Edu Sains: Jurnal Pendidikan Sains & Matematika Vol 8, No 2 (2020): VOLUME 8 NOMOR 2 DESEMBER 2020
Publisher : IAIN Palangka Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23971/eds.v8i2.1991

Abstract

Penelitian ini bertujuan mendeskripsikan kemampuan komunikasi matematis peserta didik dalam menyelesaikan soal cerita pada materi barisan dan deret. Penelitian ini bersifat deskriptif kualitiatif serta menggunakan metode survey. Subjek dalam penelitian ini adalah 15 peserta didik MAN 3 Malang yang terbagi dalam kelompok berkemampuan komunikasi matematis tinggi, sedang, dan rendah. Dari masing-masing kelompok, diambil satu subyek untuk dideskripsikan kemampuan komunikasi matematisnya. Hasil menunjukkan bahwa peserta didik dengan kemampuan komunikasi matematis tinggi memiliki kemampuan komunikasi matematis yang baik dalam representasi penyelesaian masalah soal cerita dan dalam mengomunikasikan hal-hal yang berkaitan dengan soal dengan simbol matematis. Untuk peserta didik berkemampuan komunikasi matematis sedang, cenderung melakukan kesalahan dalam menulis representasi penyelesaian masalah, serta sudah dapat menuliskan hal-hal yang diketahui, ditanya, dan kesimpulan dengan menggunakan simbol matematis secara benar. Adapun untuk peserta didik dengan komunikasi matematis rendah, bawah belum dapat memenuhi keduanya.
Co-Authors 'Adna, Syita Fatih Abdul Haris Rosyidi Abdul Haris Rosyidi Abdur Rahman As’ari Abdur Rohim, Abdur Abdurrahim Arsyad Afin Nur Latifa Agung Prasetyo Abadi Agus Prianto Ahmad Farid Haebah Akbar Sutawidjadja Akbar Sutawidjaja Akbar Sutawidjaja, Akbar Alhikma, Nur Alaviyah Alif Mudiono Alip Rahmawati Zahrotun Nisak Alyani, Nabila Nur Amalia Silwana Ana Fitriah ANDRIANI, RULI Anggraini Dwi Ikhwani Anggraini, Elisa Anjali, I Gusti Agung Shomia Ari Kusuma Sulyandari Aribowo, Bayu Exsanty Arif Rahman Hakim Arifah Adlina Rashahan Astuti, Ririn Novia Aulia Nadia Sari Barep Yohanes Bhakti Setya Budi Budi, Bhakti Setya Cholis Sa’dijah Chusnul Ma'rifah Chusnul Ma'rifah Daroini, Mustain Bagus Deni Hamdani Dian Kurniati Didimus Nuham, Didimus Dimas Femy Sasongko Dwiyana Dwiyana Dwiyana Dwiyana Dyah Ayu Pramoda Wardhani Dyah Triwahyuningtyas Dyah Triwahyuningtyas Edy Bambang Irawan Eka Resti Wulan Eko Waluyo Elli Kusumawati Endang Trinoviawati Erry Hidayanto Evidiasari, Serli Fadhil Zil Ikram Feriyanto Feriyanto Hamdani, Deni Hamdani, Deni Hery Susanto Hery Susanto Hidayati, Vivi Rachmatul I Ketut Suada I Made Sulandra I Nengah Parta Iffanna Fitrotul Aaidati Ika Santia Indah Syafitri T Indriati Nurul Hidayah Intan Sari Rufiana Ipung Yuwono Iqbal Ramadani Irawati, Santi Irna Natalis Sanit Ishmatul Maula, Ishmatul Ismatul Maula Jennah, Mufliatul Kadek Adi Wibawa Karolin Natalia T Khair, Muhammad Sa'duddien Khalimatus Syuhriyah Laelinatul Choeriyah Laelinatul Choeriyah Laily Wijayanti Utami Lamowa, Rachmad Abubakar Lestary, Ratnah Lydia Lia Prayitno Lydia Lia Prayitno, Lydia Lia Makbul Muksar Malik, Fatus Atho'ul Manyunu, Muhamatsakree Martha Lestari Miftachus Sururoh Mohammad Dadan Sundawan Mufidha, Nurul Muhamatsakree Manyunu Muhammad Ainur Rizqi Muhammad Irfan Muhammad Irfan Muniroh Novisa Nabilah Mansur Nathasa Pramudita Irianti Nathasa Pramudita Irianti, Nathasa Pramudita Netti, Syukma Netti Syukma Ningtyas, Yoga Dwi Windy Kusuma Ninik Mutianingsih, Ninik Novi Nurhayati Novisa, Muniroh Nur Fitri Amalia Nur Hasan Nur Indah Permata Sari Nurul Mufidha Nury Azkiya Umamy Permadi, Hendro Punaji Setyosari Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto, Purwanto Puspita Ayu Damayanti Putri Ariningtyas Putri, Nanda Azzahra Qohar, Abd. Rashahan, Arifah Adlina Refni Adesia Pradiarti Risa Utaminingsih Rizky Nova Damayanti Ruli Andriani Rustanto Rahardi Sa’dijah, Cholis Sandie Sartati, Setiawan Budi Satriya Adika Arif Atmaja Satriya Adika Arif Atmaja Sa’dijah, Cholish Selly Meinda Dwi Cahyaningsih Serli Evidiasari Serli Evidiasari Setiawan Budi Sartati Silwana, Amalia Sisworo Sri Mulyati Sri Mulyati Sri Subarinah Sri Untari Suci Yuniati Sudirman Sudirman Sudirman Sudirman Sukorianto Sukorianto Sukoriyanto Suryaningrum, Christine Wulandari Susiswo Sutawdjaja, Akbar Sutawidjadja, Akbar Swasono Rahardjo Swasono Raharjo Swastika, Galuh Tyasing Syamsiar, Syamsiar Syamsul Hadi Syamsuri Syamsuri Syamsuri Syamsuri Syamsuri Syamsuri, Syamsuri Syarifudin Syarifudin Taufiq Hidayanto Tjang Daniel Chandra Toto Nusantara Umamy, Nury Azkiya Umardiyah, Fitri umi faizah Viving Laila Wahyu Santoso Wahyuningtiyas, Kharisma Wardhani, Indah Setyo Wasti Tampi Wasti Tampi Wulan Anindya Wardhani Yandi Raharjo, Eko Yanna Purwitaningsih Yoga Dwi Windy Kusuma Ningtyas Yoggy Febriawan Yundari, Yundari