p-Index From 2021 - 2026
15.288
P-Index
This Author published in this journals
All Journal Journal of Marine Research ARABIYAT Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management) Jurnal Informatika dan Teknik Elektro Terapan Jurnal Studi Agama dan Masyarakat Bianglala Informatika : Jurnal Komputer dan Informatika Akademi Bina Sarana Informatika Yogyakarta Madaniyah: Terciptanya Insan Akademis Berkualitas Dan Berakhlak Mulia JIKO (Jurnal Informatika dan Komputer) qolamuna : Jurnal studi islam Jurnal SOLMA BAREKENG: Jurnal Ilmu Matematika dan Terapan JURNAL ILMIAH INFORMATIKA Jurnal Inovasi Hasil Pengabdian Masyarakat (JIPEMAS) QARDHUL HASAN: MEDIA PENGABDIAN KEPADA MASYARAKAT Jambura Journal of Food Technology JSI (Jurnal sistem Informasi) Universitas Suryadarma Jurnal Tekno Kompak Jurnal Ilmiah ILKOMINFO - Ilmu Komputer & Informatika Jurnal Edukasi (Ekonomi, Pendidikan dan Akuntansi) JURSIMA (Jurnal Sistem Informasi dan Manajemen) JATI (Jurnal Mahasiswa Teknik Informatika) Jurnal Biogenerasi JISA (Jurnal Informatika dan Sains) BERNAS: Jurnal Pengabdian Kepada Masyarakat Al-Fusha : Arabic Language Education Journal Jurnal Pendidikan dan Teknologi Indonesia Mosharafa: Jurnal Pendidikan Matematika Tanwir Arabiyyah: Arabic as Foreign Language Journal Jurnal Dinamika Informatika (JDI) Jurnal EBONI Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi) Journal of Artificial Intelligence and Engineering Applications (JAIEA) PENA ABDIMAS : Jurnal Pengabdian Masyarakat Makara Journal of Technology Jurnal Sistem Informasi dan Teknologi (SINTEK) Indonesian Journal of Fundamental Sciences Journal of Tourism Education Prosiding Seminar Nasional Manajemen dan Ekonomi JURSIMA Iqtida: Journal of Da'wah and Communication Huma: Jurnal Sosiologi AMMA : Jurnal Pengabdian Masyarakat Jurnal Biologi Babasal Al-Zayn: Jurnal Ilmu Sosial & Hukum Jurnal Sistem Informasi dan Manajemen Maddana: Jurnal Pengabdian Kepada Masyarakat Sirajuddin : Jurnal Penelitian dan Kajian Pendidikan Islam Prosiding Seminar Nasional Unimus Informasi interaktif : jurnal informatika dan teknologi informasi Jurnal Riset Multidisiplin Edukasi J-CEKI PESHUM Jurnal Geosaintek Sintek Kuwera Sirajuddin: Jurnal Penelitian dan Kajian Pendidikan Islam
Claim Missing Document
Check
Articles

Analisis Kinerja Algoritma Machine Learning untuk Klasifikasi Prestasi Mahasiswa pada Mata Kuliah Bahasa Inggris Riri Narasati; Dadang Sudrajat; Ahmad Faqih; Indra Wiguna Marthanu; Agus Bahtiar
Prosiding SISFOTEK Vol 9 No 1 (2025): SISFOTEK IX 2025
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study analyzes the performance of several machine learning algorithms in classifying student achievement in English language courses. The research focuses on comparing the performance of K-Nearest Neighbors (KNN), Naïve Bayes, Random Forest, and Support Vector Machine (SVM) using the K-Fold Cross Validation approach to evaluate accuracy, F1-score, and fairness. The dataset, consisting of students’ final grades, was processed through data pre-processing and feature scaling. Results show that the KNN model with K=5 achieved the highest accuracy of 100%, followed by Naïve Bayes with 95.59%. Statistical tests indicated a significant performance difference between Random Forest and SVM, while fairness evaluation revealed that Random Forest provided the most balanced error distribution. These findings confirm that KNN and Random Forest algorithms are highly effective for academic performance classification based on numerical data. The study highlights the potential of machine learning to enhance adaptive, objective, and equitable educational evaluation systems.
1D-CNN-Based Childhood Stunting Prediction through Socio-Economic Data Integration and Community Participation Bahtiar, Agus; Mulyawan, Mulyawan; Faqih, Ahmad; Lidina, Lidina; Fitria, Ananda Rizki
JISA(Jurnal Informatika dan Sains) Vol 8, No 2 (2025): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v8i2.2490

Abstract

Stunting remains a significant global public health challenge, affecting approximately 148 million children under the age of five. This condition leads to long-term cognitive and physical deficits, particularly in low- and middle-income countries. Many existing prediction models fail to capture the complex interdependencies between nutritional, socio-economic, and environmental factors. To address this gap, our study introduces a 1D-Convolutional Neural Network (1D-CNN) model designed to predict childhood stunting using structured datasets collected from community health centers (Puskesmas) and validated by the Cirebon City Health Department (Dinas Kesehatan Kota Cirebon), Indonesia. The dataset includes anonymized records of children under five years old, comprising anthropometric measurements, socio-economic profiles, nutritional intake, and environmental indicators, gathered through household surveys and routine public health reporting. The proposed 1D-CNN architecture is optimized for structured data by integrating convolutional and pooling layers, dropout regularization, and dense classification layers. To enhance interpretability, we employ explainable AI (XAI) methods—SHAP and LIME—to reveal the relative influence of each feature in the model’s decision-making process. Additionally, the study applies a participatory validation approach through focus group discussions (FGDs) with community health workers, ensuring contextual relevance and ethical integrity. Experimental results demonstrate the superior performance of the proposed model, achieving 93.12% accuracy, with a precision of 97% and a recall of 89%, resulting in an F1-score of 93% across both stunted and non-stunted classes. These findings outperform traditional machine learning approaches and highlight the potential of AI-driven predictive frameworks for early stunting detection and policy-oriented health interventions. This research contributes to the advancement of data-driven public health strategies by integrating predictive analytics, community participation, and transparent AI methodologies
Evaluasi Pengaruh Kualitas Data Terhadap Performa Model Machine Learning Menggunakan Pendekatan Data-Centric AI Bisma Mahendra; Martanto; Denni Pratama; Ahmad Faqih; Rudi Kurniawan
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.211

Abstract

Penelitian ini mengevaluasi pengaruh kualitas data terhadap performa model machine learning menggunakan pendekatan Data-Centric Artificial Intelligence (DCAI). Eksperimen dilakukan pada Titanic Dataset dengan membandingkan Random Forest dan Support Vector Machine (SVM) dalam tiga skenario penanganan missing values, yaitu Drop Missing, Mean Imputation, dan No Imputation. Kinerja model dievaluasi menggunakan metrik Accuracy, F1 Score, dan Area Under Curve (AUC). Hasil menunjukkan bahwa intervensi kualitas data memberikan dampak signifikan terhadap performa model. Random Forest mencapai performa terbaik pada skenario Drop Missing dengan Accuracy 0.813, F1-Score 0.758, dan AUC 0.859, sedangkan SVM memperoleh Accuracy tertinggi sebesar 0.822 pada skenario Mean Imputation. Uji statistik Paired t-Test menunjukkan tidak terdapat perbedaan performa yang signifikan secara statistik antara kedua model (p-value > 0.05). Temuan ini menegaskan bahwa peningkatan kualitas data lebih berpengaruh terhadap kinerja model dibandingkan pemilihan algoritma, sehingga mendukung paradigma Data-Centric AI.
Evaluasi Pengaruh Kualitas Data Terhadap Performa Model Machine Learning Menggunakan Pendekatan Data-Centric AI Bisma Mahendra; Martanto; Denni Pratama; Ahmad Faqih; Rudi Kurniawan
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.211

Abstract

Penelitian ini mengevaluasi pengaruh kualitas data terhadap performa model machine learning menggunakan pendekatan Data-Centric Artificial Intelligence (DCAI). Eksperimen dilakukan pada Titanic Dataset dengan membandingkan Random Forest dan Support Vector Machine (SVM) dalam tiga skenario penanganan missing values, yaitu Drop Missing, Mean Imputation, dan No Imputation. Kinerja model dievaluasi menggunakan metrik Accuracy, F1 Score, dan Area Under Curve (AUC). Hasil menunjukkan bahwa intervensi kualitas data memberikan dampak signifikan terhadap performa model. Random Forest mencapai performa terbaik pada skenario Drop Missing dengan Accuracy 0.813, F1-Score 0.758, dan AUC 0.859, sedangkan SVM memperoleh Accuracy tertinggi sebesar 0.822 pada skenario Mean Imputation. Uji statistik Paired t-Test menunjukkan tidak terdapat perbedaan performa yang signifikan secara statistik antara kedua model (p-value > 0.05). Temuan ini menegaskan bahwa peningkatan kualitas data lebih berpengaruh terhadap kinerja model dibandingkan pemilihan algoritma, sehingga mendukung paradigma Data-Centric AI.
Co-Authors -, Kaslani Abdullah Baharun Abi Fajar Ahmad Fauzi Achmad Supandi Ade Rizki Rinaldi Ade Rizki Rinaldy Adella, Luthfiyyah Iffah Adellia Putriani Adjie Setyadj, Mochammad Adnan Adnan Agung Triyono agus bahtiar Agus Riyadi Ahlam Musaydah Ahmad Jihadi Ahmad Rifai Akhmad Abu Khasan Muzakki Akhmad Subhan Al Ghozali, Muhammad Iqbal Ali, Ashehad Aswen Alma’as, Azis Amelia, Mita Andi Setiawan Andriawan, Dimas Annisa Rahmi Anshari, Rahman Ardiyanto Saleh Modjo Arif Rinaldi Dikananda Arlandy, Kevin Salsabil Arnas Arnas, Arnas Arum Sari Arya Wijaya, Arya Athhar Hafizha Luthfi ayu hardani, anita Aziz Ramadhani Badruddin Bafadal, Mentarry Bambang Irawan Bambang Siswoyo Basysyar, Fadhil Muhammad Bisma Mahendra Chatarina Umbul Wahyuni Chulyatunni’mah Dadang Sudrajat Denni Pratama Devika Rahayu Daud Dewi Wahyuni K. Baderan Diding Herudin Diding Herudin Diding Herudin, Diding Herudin Dienwati Nuris, Nisa Dikananda, Arif Rinaldi Dikananda, Fatihanursari Dini Andriyani Dita Rizki Amalia Dita, Mesya Sabhna Adma Djamadi, Dian Anggreini Dwi Kusuma, Lukman Edi Tohidi Eka Permana, Sandy Enjelita, Ratu Erieska Aprilyanti Esa Putra, Arga Ezra Pratama, Daffa Fadhil Muhammad Basysyar Fadilah, Euis Fajri, Ibnu Fajria, Azzahra Moudy Fathurrohman, Fathurrohman Febiyanto, Anggi Fidya Arie Pratama Fitria, Ananda Rizki Fuad Pontoiyo Gagarin, Muhamad Yuri Giannetti, Niccolo Gifthera Dwilestari Gilang Ramadhan Gumelar, Restu Habiballoh, Hafshoh Hafshoh Habiballoh Hamdan, Faiz Dzul Fahmi Hamzah, Hasyrul Haqiyah, Aridhotul Hasim Hasim Hasim Hasim Herdiyana, Ruli Hermawan, Bagus Hermawan, Muhammad Andi Hidayat, Manarul Hikmah Maulani Himawan, Toni Iffah Adelia, Luthfiyyah Ikraeni Safitri Ilah Holilah Ilma’nun, M. Lulu Indra Wiguna Marthanu Iqbal Syaidin, Fadli Irfan Ali, Irfan Jamiatur Rasyidah Jannah, Afni Nur Juliandro, Daniel Juramang, Risnayanti R K. Toiyo, Frandika Kadir, Rian Kaslani Khaerul Anam Khairul Akmal, Khairul Khairussalam Khoirul Huda, Muhammad Knohl, Alexander Komalasari, Cahyaningrum Kurnia, Dian Ade Kurniasih, Desta Dwi La Alio La Alio Laili Hidayatun Nikmah Laksono, Agung Lestari, Anjar Ayuning Lestari, Wien Lidina, Lidina Lila Zulfa Kamila M. Basysyar, Fadhil Ma'rufah, Ummu Madyant Mahendra, Yusril Muhamad Izha Mahludin H. Baruwadi Maman Abdurrahman Manarul Hidayat Martanto Maulana Sidiq, Cecep Maulana, Haris Mey Yulan Moko Mia Nurmala Mifta Almaripat Miftahul Huda Mohamad Riad Solihin Mohammad Sholehuddin Mohammad Syaefudulloh Mubarok, Fatkhan Muh. Arfah Syam Muhammad Daffa Ayyasy Muhammad Fajid, Marfelio Muharram Muharram Muhfidz Hidayat, Aziz Muhibuddin Mukdin, Novita B Mulyana, Dani Mulyawan Mulyawan Mulyawan, Mulyawan Nalahuddin Saleh Narasati, Riri Narasati Nasruddin Nasruddin Nida Naswa Ningrum, Cistia Ningsih, Indah Ratna Nisa Sari, Ainun Norma Feti Farida Novi Mardiana Nur Atika Astriani Nur Farida, Farah Nur Halimah Nur Rochmah, Aulia Nuraini, Asyifa Nurhadiansyah, Nurhadiansyah Nurjana Adi Wijaya Nurul Aini, Yuli Odi Nurdiawan Oktavia, Riska Permadani Pertiwi, Pirda Parida Permana , Sandy Eka Permana, Sandy Eka Pratama, Denni Pratama, Fidya Arie R. Juramang, Risnayanti Rachmatullah, Mochamad Miftah Rahayu, Helda Kusuma Rahma, Aliya Anisa Ramiro Firjatullah, Federicko Ramli Utina Raudya, Talitha Rayhan, Tubagus Muhammad Rifa'i, Ahmad Rifa’I, Ahmad Rinaldi Dikananda, Arif Riri Narasati Ristika Handarini Riyanto Adji Rizqy, Muhammad Enricco Rohmat, Cep Lukman Rosmeri Manurung, Agnes Rudi Kurniawan Rusmayana, Sigit Saeful Anwar, Saeful Saepu Qirom, Dani Saepudin, Asep Safitri, Ikraeni Sagita, Ayu Sandy Eka Permana Sandy Eka Permana, Faqih Selly Novita Sari Septianto, Muhamad Arif Sigit Rusmayana SM, Farid Solihudin, Dodi Subaegi, Angga Sugihartono, Tri Suharno, Achmad Sulaeman, Muhamad Supandi, Achmad Suryani Dewi, Ike Susana, Heliyanti Syaefudulloh, Mohammad Syam, Muh Arfah Syam, Muh. Arfah Syayid Al Manar Tania June Tati Suprapti Tengku Riza Zarzani N Tissa Aunilla Tomayahu, Tian Toriquddin Umar, Achmad Jauhari Wahyu Ningrum Sulistyowati Wanada, Gada Wanda, Aliffa Wijaya, Nurjana Adi Yonny Koesmaryono Yoshua, Deden Yudhistira Arie Wijaya Yuliantin, Yovi