p-Index From 2021 - 2026
7.682
P-Index
This Author published in this journals
All Journal Cakrawala Pendidikan Jurnal Pendidikan Matematika Jurnal Matematika Jurnal Pendidikan Matematika Undiksha Jurnal Pendidikan Sains Journal of Education and Learning (EduLearn) Journal on Mathematics Education (JME) Journal on Mathematics Education (JME) AKSIOMA: Jurnal Program Studi Pendidikan Matematika SIGMA: Jurnal Pendidikan Matematika JIPM (Jurnal Ilmiah Pendidikan Matematika) Phenomenon : Jurnal Pendidikan MIPA Edu Sains: Jurnal Pendidikan Sains dan Matematika EDU-MAT: Jurnal Pendidikan Matematika Journal of Research and Advances in Mathematics Education Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JPPM (JURNAL PENELITIAN DAN PEMBELAJARAN MATEMATIKA) AKSIOMA Al-Jabar : Jurnal Pendidikan Matematika NUMERICAL (Jurnal Matematika dan Pendidikan Matematika) Briliant: Jurnal Riset dan Konseptual Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Jurnal Kajian Pembelajaran Matematika JRPM (Jurnal Review Pembelajaran Matematika) JMPM: Jurnal Matematika dan Pendidikan Matematika PRISMA IndoMath: Indonesia Mathematics Education Muallimuna : Jurnal Madrasah Ibtidaiyah Communications in Science and Technology JTAM (Jurnal Teori dan Aplikasi Matematika) International Journal on Emerging Mathematics Education MENDIDIK: Jurnal Kajian Pendidikan dan Pengajaran Premiere Educandum: Jurnal Pendidikan Dasar dan Pembelajaran AXIOM : Jurnal Pendidikan dan Matematika Jurnal Cendekia : Jurnal Pendidikan Matematika Prima: Jurnal Pendidikan Matematika SIGMA Indonesian Journal on Learning and Advanced Education (IJOLAE) ANARGYA: Jurnal Ilmiah Pendidikan Matematika Math Educa Journal Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Media Pendidikan Matematika International Journal of Insights for Mathematics Teaching (IJOIMT) MATHEMA: JURNAL PENDIDIKAN MATEMATIKA International Journal of Humanities and Innovation (IJHI) Mosharafa: Jurnal Pendidikan Matematika Al Hikmah: Journal of Education Eduvest - Journal of Universal Studies Jurnal Penelitian Pendidikan Indonesia Jurnal Pendidikan Progresif Media Pendidikan Matematika
Claim Missing Document
Check
Articles

Analisis Penerapan Inkuiri Secara Daring dengan Scaffolding Berbantuan Geogebra Materi Fungsi Kuadrat Nurul Mufidha; Subanji Subanji
JRPM (Jurnal Review Pembelajaran Matematika) Vol. 7 No. 2 (2022)
Publisher : Department of Mathematics Education, Faculty of Tarbiyah and Teacher Training, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15642/jrpm.2022.7.2.124-146

Abstract

This study aims to analyze and describe the application of online inquiry learning with the GeoGebra-assisted scaffolding technique on quadratic function material in grade IX students at SMP Negeri 1 Malang. This research is a qualitative descriptive study, with the instruments used in the form of a learning implementation sheet, student activity sheets, student learning outcomes tests, questionnaires, and interviews. The results showed that learning according to the steps of inquiry had gone very well with an average implementation score of 94.5. Learning is carried out by scaffolding through questions directed at focusing, inviting, reminding, clarifying, and evaluating so that it is compatible with inquiry learning which is applied online. Student learning outcomes reached an average score of 73 daily tests in the good category.
BERPIKIR KREATIF SISWA DALAM MENYELESAIKAN PERMASALAHAN KONTROVERSIAL MATEMATIS Satriya Adika Arif Atmaja; Toto Nusantara; Subanji Subanji
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 12, No 1 (2023)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (918.862 KB) | DOI: 10.24127/ajpm.v12i1.6764

Abstract

Hakikat belajar matematika adalah menumbuhkembangkan proses berpikir siswa. Kemampuan berpikir kreatif sangat diperlukan dalam mengatasi beranekaragam permasalahan matematis. Salah satu permasalahan matematis yang menuntut kemampuan berpikir kreatif adalah permasalahan kontroversial matematis. Penelitian ini bertujuan untuk mendeskripsikan model berpikir kreatif siswa dalam menyelesaikan permasalahan kontroversial matematis. Pendekatan penelitian yang digunakan adalah pendekatan kualitatif. Subjek penelitian berjumlah 181 siswa yang terdiri dari siswa kelas 7 dan 8 MTs Surya Buana Malang, Jawa Timur. Instrumen penelitian yang digunakan terdiri dari empat permasalahan kontroversial matematis pada materi geometri yang disusun tim peneliti. Hasil penelitian ini menunjukkan bahwa tiga level model berpikir kreatif siswa ketika menyelesaikan permasalahan kontroversial matematis meliputi imitasi, modifikasi, dan konstruksi. Pada level imitasi, subjek meniru prosedur penyelesaian masalah yang terkesan masuk nalar dengan cara menggambarkan pemecahan masalah, mengadopsi konsep penyelesaian sebelumnya, dan mendayagunakan logika saja. Pada level modifikasi, subjek mengubah objek, konsep, dan prosedur untuk menghasilkan penyelesaian. Pada level konstruksi, subjek mengembangkan hasil analisis terhadap objek maupun konsep menjadi sebuah prosedur penyelesaian masalah baru. Selain itu, setiap level model berpikir kreatif pada penelitian ini sangat dipengaruhi karakteristik dari permasalahan kontroversial, yakni perbedaan sudut pandang. Sehingga, kecenderungan subjek dalam mengimitasi, memodifikasi, dan mengkonstruksi pemecahan masalah sangat berbeda dengan permasalahan matematis lainnya. The essence of learning mathematics is to develop students' thinking processes. The ability to think creatively is needed to overcome various mathematical problems. One of the mathematical problems that require the ability to think creatively is a controversial mathematical problem. This study aims to describe students' creative thinking models in solving controversial mathematical problems. The research approach used is qualitative. The research subjects totaled 181 students in grades 7 and 8 of MTs Surya Buana Malang, East Java. The research instrument used consisted of four controversial mathematical problems in the geometry material compiled by the research team. The results of this study found that the three levels of students' creative thinking models when solving controversial mathematical problems include imitation, modification, and construction. At the level of imitation, the subject imitates problem solving procedures that seem reasonable by describing problem solving, adopting previous solving concepts, and using only logic. At the modification level, the subject changes objects, concepts, and procedures to produce solutions. At the construction level, the subject develops the results of analyzing objects and concepts into a new problem-solving procedure. In addition, each level of the creative thinking model in this study is strongly influenced by the characteristics of controversial issues, namely different points of view. Thus, the subject's tendency to imitate, modify, and construct problem solving is very different from other mathematical problems.
Student’s creative model in solving mathematics controversial problems Subanji Subanji; Toto Nusantara; Sukoriyanto Sukoriyanto; Satriya Adika Arif Atmaja
Jurnal Cakrawala Pendidikan Vol 42, No 2 (2023): Cakrawala Pendidikan (June 2023)
Publisher : LPMPP Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/cp.v42i2.55979

Abstract

For students to compete with the rapid advancement in science, technology, and the arts, creativity must be more than just a necessary skill. This study of levels of creativity performed when addressing statistical issues is a follow-up to earlier studies. To create a distinctive model, a controversial aspect was used. The study revealed that there were five levels of creative models, in addition to the three levels of the earlier research: pre-imitation, imitation, modification, combination, and construction. The pre-imitation stage is defined by the subject's limited capacity for imitation. The level of imitation is determined by the act of copying methods even when one does not actually understand them. The modification level is essentially defined by the process of altering a procedure so that it can be applied to solve an issue. The process for merging several settings or problem-solving strategies also serves to define the level of combination. The construction level is determined by the process of developing new methods to handle problems.
Aktivitas Metakognitif Siswa dengan Gaya Kognitif Reflektif dalam Memecahkan Masalah Matematika Anggraini Dwi Ikhwani; Subanji Subanji; Hery Susanto
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 7 No 3 (2023): Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 7 Nomor 3 Tahun 2023
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v7i3.2481

Abstract

Pemecahan masalah merupakan salah satu tujuan utama dalam mata pelajaran matematika. Salah satu faktor keberhasilan siswa dalam proses memecahkan masalah matematika yaitu metakognitif. Aktivitas metakognitif penting dalam proses pemecahan masalah yang dilakukan siswa, dimana setiap siswa memiliki cara yang berbeda-beda dalam memecahkan masalah. Tujuan penelitian ini adalah untuk mendeskripsikan aktivitas metakognitif siswa dengan gaya kognitif reflektif dalam memecahkan masalah matematika. Jenis penelitian yang digunakan adalah jenis penelitian kualitatif dengan pendekatan deskriptif. Pengumpulan data dilakukan dengan pemberian Matching Familiar Figure Test (MFFT), soal tes pemecahan masalah, dan wawancara. Penelitian ini dilakukan pada salah satu kelas VII di MTsN 1 Kediri. Subjek penelitian sebanyak 2 siswa dengan gaya kognitif reflektif. Hasil penelitian diperoleh bahwa subjek dengan gaya kognitif reflektif mengalami semua aktivitas metakognitif dalam memecahkan masalah matematika yang diberikan yaitu mengalami aktivitas metakognitif awareness pada tahap memahami masalah, mengalami aktivitas metakognitif evaluation pada tahap membuat rencana, mengalami aktivitas metakognitif regulation pada tahap melaksanakan rencana, dan mengalami aktivitas metakognitif evaluation pada tahap memeriksa kembali.
Cognitive Conflict of Relational Learners in Connecting Proportion Concepts on Three Term Ratio Problems Ratnah Lestary; Subanji; Iqbal Ramadani
Numerical: Jurnal Matematika dan Pendidikan Matematika Vol. 6 No. 2 (2022)
Publisher : Institut Agama Islam Ma'arif NU (IAIMNU) Metro Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25217/numerical.v6i2.2576

Abstract

The study's purpose is to describe the cognitive conflicts experienced by students with relational understanding when solving the problem of three-term ratios. The current research is a case study with a qualitative approach using a purposeful sampling technique. The three research objects are representations of the condition that (1) the student was sure of his solution (cognitive conflict was solved) and the solution is correct, (2) the student was confident with his solution (cognitive conflict was solved) but the solution is not correct, and he is not confident with the solution (cognitive conflict was not solved), and the solution was not correct. The results of this study describe students with relational understanding experience cognitive conflicts, that is, being aware of the conflict between the initial concepts they have and the results obtained. Students feel doubtful and worried, as indicated by the awareness that the initial scheme applied to one proportion problem cannot be applied to other comparison questions. Students' cognitive conflicts with relational understanding do not always lead them to get the correct solution to the three-term ratio problems. The reason is that the student believes comparison is wrong (misconception).
METACOGNITIVE ACTIVITIES IN GROUP DISCUSSIONS OF ELEMENTARY SCHOOL STUDENTS MATHEMATICS MULTIPLICATION MATERIAL Dyah Triwahyuningtyas; Cholis Sadijah; Makbul Muksar; Subanji Subanji
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 13, No 1 (2024)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/ajpm.v13i1.9691

Abstract

Student metacognition only focuses on individuals, not yet associated with student positioning in the group. There are positioning groups whose roles change, so it is necessary to examine more deeply the characterization of students' metacognition in solving multiplication problems in group discussions in terms of student positioning. This study aims to describe students' metacognitive activities, students' roles during the discussion process, and students' metacognitive abilities related to students' roles during group discussions on multiplication material in mathematics of grade 6 students in one of the public elementary schools in Indonesia. Not only knowing the concept so that students can think critically and learn independently from students without teacher assistance, but also students must be trained in solving problems. This study used descriptive qualitative as the research method. It was found that awareness was mainly found in expert and facilitator positions, regulation was found in expert and facilitator students, and evaluation was found in all student roles. The metacognitive characteristics that emerged in group discussions were expert students as triggers (stimulus) and regulators (contribution), facilitator students as regulators (contribution) and followers (passive), and novice students as followers (passive).Metakognitif siswa hanya berfokus terhadap individu, belum dikaitkan dengan pemosisian siswa dalam kelompok. Ada kelompok pemosisian yang perannya berubah, sehingga perlu mengkaji lebih mendalam terkait karakterisasi metakognitif siswa dalam menyelesaikan masalah perkalian pada diskusi kelompok ditinjau dari pemosisian siswa. Penelitian ini bertujuan untuk mendeskripsikan aktivitas metakognitif siswa, peran siswa selama proses diskusi, dan kemampuan metakognitif siswa yang terkait dengan peran siswa selama diskusi kelompok pada materi perkalian matematika siswa kelas 6 di salah satu sekolah dasar negeri di Indonesia. Tidak hanya mengetahui konsep agar siswa dapat berpikir kritis dan belajar secara mandiri dari siswa tanpa bantuan guru, tetapi juga siswa harus dilatih dalam memecahkan masalah. Penelitian ini menggunakan deskriptif kualitatif sebagai metode penelitian. Ditemukan bahwa kesadaran terutama ditemukan pada posisi ahli dan fasilitator, regulasi ditemukan pada siswa ahli dan fasilitator, dan evaluasi ditemukan pada semua peran siswa. Karakteristik metakognitif yang muncul dalam diskusi kelompok adalah siswa ahli sebagai pemicu (stimulus) dan pengatur (kontribusi), siswa fasilitator sebagai pengatur (kontribusi) dan pengikut (pasif), dan siswa pemula sebagai pengikut (pasif).
Pemahaman Siswa Tentang Equal Sign dalam Menyelesaikan Tugas Matematika Sartati, Setiawan Budi; Subanji, Subanji; Sisworo, Sisworo
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol. 2 No. 1: December 2018
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/e-saintika.v2i1.80

Abstract

[Title: The Students' Understanding of Equal Sign in Completing Mathematics Tasks]. This study aims to describe the student's understanding of the equal sign to solve mathematical tasks. This study was included in the qualitative descriptive study. In this study, the data collected is the data of student’s work and verbal data (the interview). The subjects were six students of 7th class of MTs Attariqie Malang 2014/2015 (Junior High School), with details of two high-ability students, two students capable of being, and two low-ability students. Students' understanding of the equal sign examined further by providing tests and interviews in six research subjects. Interviews were conducted individually after the students work on the problems individually. The mathematical task load arithmetic and algebra problems. Based on the results of the study, all subjects were able to understand the equal sign as operational and the equal sign as a substitution. For equal sign as the basic relational, only high-ability students were able to understand it. Understanding of medium and low student capable entrenched in the operational pattern that is an equal sign as operational cause confusion to understanding equal sign as the basic relational, eg, 14+11=25+8 where students only pay attention to the results of operations that 14 plus 11 is 25 without notice relation of the addition of 8.
Kemampuan Bertanya Siswa dalam Kegiatan Diskusi Kelompok pada Materi Rasio Trigonometri Faizah, Umi; Subanji, Subanji; Susiswo, Susiswo
JIPM (Jurnal Ilmiah Pendidikan Matematika) Vol 9, No 2 (2021)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/jipm.v9i2.8064

Abstract

Small group discussions (group work) are an important part of the learning process though students are rarely skilled at asking a question. The purpose of this study is to examine student interactions and questioning skills during group work. This research study uses a qualitative descriptive approach. The research subjects consist of eight students who were divided heterogeneously into two groups, with four members for each group. The research instrument consists of the researcher herself, a task in the form of a trigonometric ratio group worksheet, and three video cameras to observe discussion activities. One camera was focused on all class activities and two cameras were pointing at each group being observed. All conversation transcripts during the discussion are deciphered, coded, and then analyzed qualitatively. The results of this study show the interaction of conveying opinion/rebuttals, asking questions, and providing answers, with the percentage of giving opinions/ objections were more dominant than other interactions. The ability to ask questions was obtained by 50% of the students having the medium questioning ability and 50% having the low questioning ability, with the level of questions asked at the LOTS level, namely C1 and C3 levels. None of the students had high questioning skills. Of the two groups observed, group A was more active in interacting both in terms of exchanging opinions/rebuttals, asking questions, and providing answers. Suggestions for further research need to be carried out an in-depth analysis of discussion activities both in terms of asking questions or providing feedback to see the emergence of collaborative reasoning.
Students’ Mathematical Connection Error in Solving PISA Circle Problem Hidayati, Vivi Rachmatul; Subanji, Subanji; Sisworo, Sisworo
JIPM (Jurnal Ilmiah Pendidikan Matematika) Vol 8, No 2 (2020)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/jipm.v8i2.5588

Abstract

The mathematical connection is one of the competencies in NCTM that students need to have. Mathematical connections can help students understand material and mathematical concepts easily. In addition, mathematical connections can help students in solving mathematical problems. Even so, mathematical connection errors are still made by some students. Mathematical connection errors made by students when solving geometry problems, especially about a circle. The purpose of this study is to describe the mathematical connection errors made by students in solving problems adapted from PISA problems focusing on circle material. This research method is descriptive-qualitative. Prospective subjects are 20 of 8th-grade students in one of the junior high schools in Malang who have studied about a circle. Based on the distribution of answers, two subjects were selected in this study. After going through the interview process, the data obtained in the form of work results and interview transcripts. Based on the results of research, mathematical connection errors made by research subjects in the form of not being able to use mathematics in mathematical problems; can't find connections between topics in mathematics; unable to understand the representation of concepts in mathematical problems, and draw relationships between procedures on mathematical problems
ANALISIS KESALAHAN MAHASISWA PGSD DALAM MEMECAHKAN MASALAH GEOMETRI DITINJAU DARI PRIOR KNOWLEDGE Subanji, Subanji; Kusumawati, Elli; Wardhani, Indah Setyo
EDU-MAT: Jurnal Pendidikan Matematika Vol 11, No 2 (2023)
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/edumat.v11i2.17141

Abstract

Penelitian ini mengkaji kesalahan mahasiswa dalam memecahkan masalah geometri melalui penelusuran prior knowledge. Penelitian ini merupakan penelitian studi kasus tipe instrumental melibatkan 185 mahasiswa PGSD Universitas Trunojoyo Madura. Subjek menyelesaikan instrumen pelacak prior knowledge dan dilanjutkan pemecahan masalah. Hasil penelitian menunjukkan bahwa 71 (38,37%) gagal menyelesaikan masalah segitiga dan 124 (67,02%) subjek gagal menyelesaikan masalah jajar genjang. Kesalahan menyelesaikan masalah tersebut dikarenakan kesalahan memahami prior knowledge. Kesalahan pemecahan masalah dapat dikelompokkan menjadi empat bentuk yaitu: (1) kesalahan representasi; (2) kesalahan menggambar garis tinggi, (3) kesalahan dalam menggunakan teorema phytagoras, dan (4) kesalahan memahami konteks berbeda. Sebaran kesalahan prior knowledge: 87,75% kesalahan memahami aksioma, definisi dan representasi dalam geometri sebesar; dan 26,49% kesalahan representasi gambar.   Kata kunci: Prior Knowladge, Pemecahan Masalah, Geometri Abstract: This study examines students' mistakes in solving geometric problems through searching prior knowledge. This research is an instrumental type case study involving 185 PGSD students at Trunojoyo University, Madura. The subject completed the prior knowledge tracking instrument and continued problem solving. The results showed that 71 (38.37%) failed to solve the triangle problem and 124 (67.02%) subjects failed to solve the parallelogram problem. Errors in solving these problems are due to errors in understanding prior knowledge. Problem solving errors can be grouped into four forms, namely: (1) misrepresentation; (2) mistakes in drawing heights, (3) mistakes in using the Pythagorean theorem, and (4) mistakes in understanding different contexts. Prior knowledge error distribution: 87.75% error in understanding the axioms, definitions and representations in geometry by; and 26.49% image representation error. Keywords: Prior Knowladge, Problem Solving, Geometry.
Co-Authors 'Adna, Syita Fatih Abdul Haris Rosyidi Abdul Haris Rosyidi Abdur Rahman As’ari Abdur Rohim, Abdur Abdurrahim Arsyad Afin Nur Latifa Agung Prasetyo Abadi Agus Prianto Ahmad Farid Haebah Akbar Sutawidjadja Akbar Sutawidjaja Akbar Sutawidjaja, Akbar Alhikma, Nur Alaviyah Alif Mudiono Alip Rahmawati Zahrotun Nisak Alyani, Nabila Nur Amalia Silwana Ana Fitriah ANDRIANI, RULI Anggraini Dwi Ikhwani Anggraini, Elisa Anjali, I Gusti Agung Shomia Ari Kusuma Sulyandari Aribowo, Bayu Exsanty Arif Rahman Hakim Arifah Adlina Rashahan Astuti, Ririn Novia Aulia Nadia Sari Barep Yohanes Bhakti Setya Budi Budi, Bhakti Setya Cholis Sa’dijah Chusnul Ma'rifah Chusnul Ma'rifah Daroini, Mustain Bagus Deni Hamdani Dian Kurniati Didimus Nuham, Didimus Dimas Femy Sasongko Dwiyana Dwiyana Dwiyana Dwiyana Dyah Ayu Pramoda Wardhani Dyah Triwahyuningtyas Dyah Triwahyuningtyas Edy Bambang Irawan Eka Resti Wulan Eko Waluyo Elli Kusumawati Endang Trinoviawati Erry Hidayanto Evidiasari, Serli Fadhil Zil Ikram Feriyanto Feriyanto Hamdani, Deni Hamdani, Deni Hery Susanto Hery Susanto Hidayati, Vivi Rachmatul I Ketut Suada I Made Sulandra I Nengah Parta Iffanna Fitrotul Aaidati Ika Santia Indah Syafitri T Indriati Nurul Hidayah Intan Sari Rufiana Ipung Yuwono Iqbal Ramadani Irawati, Santi Irna Natalis Sanit Ishmatul Maula, Ishmatul Ismatul Maula Jennah, Mufliatul Kadek Adi Wibawa Karolin Natalia T Khair, Muhammad Sa'duddien Khalimatus Syuhriyah Laelinatul Choeriyah Laelinatul Choeriyah Laily Wijayanti Utami Lamowa, Rachmad Abubakar Lestary, Ratnah Lydia Lia Prayitno Lydia Lia Prayitno, Lydia Lia Makbul Muksar Malik, Fatus Atho'ul Manyunu, Muhamatsakree Martha Lestari Miftachus Sururoh Mohammad Dadan Sundawan Mufidha, Nurul Muhamatsakree Manyunu Muhammad Ainur Rizqi Muhammad Irfan Muhammad Irfan Muniroh Novisa Nabilah Mansur Nathasa Pramudita Irianti Nathasa Pramudita Irianti, Nathasa Pramudita Netti, Syukma Netti Syukma Ningtyas, Yoga Dwi Windy Kusuma Ninik Mutianingsih, Ninik Novi Nurhayati Novisa, Muniroh Nur Fitri Amalia Nur Hasan Nur Indah Permata Sari Nurul Mufidha Nury Azkiya Umamy Permadi, Hendro Punaji Setyosari Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto, Purwanto Puspita Ayu Damayanti Putri Ariningtyas Putri, Nanda Azzahra Qohar, Abd. Rashahan, Arifah Adlina Refni Adesia Pradiarti Risa Utaminingsih Rizky Nova Damayanti Ruli Andriani Rustanto Rahardi Sa’dijah, Cholis Sandie Sartati, Setiawan Budi Satriya Adika Arif Atmaja Satriya Adika Arif Atmaja Sa’dijah, Cholish Selly Meinda Dwi Cahyaningsih Serli Evidiasari Serli Evidiasari Setiawan Budi Sartati Silwana, Amalia Sisworo Sri Mulyati Sri Mulyati Sri Subarinah Sri Untari Suci Yuniati Sudirman Sudirman Sudirman Sudirman Sukorianto Sukorianto Sukoriyanto Suryaningrum, Christine Wulandari Susiswo Sutawdjaja, Akbar Sutawidjadja, Akbar Swasono Rahardjo Swasono Raharjo Swastika, Galuh Tyasing Syamsiar, Syamsiar Syamsul Hadi Syamsuri Syamsuri Syamsuri Syamsuri Syamsuri Syamsuri, Syamsuri Syarifudin Syarifudin Taufiq Hidayanto Tjang Daniel Chandra Toto Nusantara Umamy, Nury Azkiya Umardiyah, Fitri umi faizah Viving Laila Wahyu Santoso Wahyuningtiyas, Kharisma Wardhani, Indah Setyo Wasti Tampi Wasti Tampi Wulan Anindya Wardhani Yandi Raharjo, Eko Yanna Purwitaningsih Yoga Dwi Windy Kusuma Ningtyas Yoggy Febriawan Yundari, Yundari